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Global image properties do not guide visual search
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While basic visual features such as color, motion, and orientation can guide attention, it is likely that additional features
guide search for objects in real-world scenes. Recent work has shown that human observers efficiently extract global scene
properties such as mean depth or navigability from a brief glance at a single scene (M. R. Greene & A. Oliva, 2009a,
2009b). Can human observers also efficiently search for an image possessing a particular global scene property among
other images lacking that property? Observers searched for scene image targets defined by global properties of
naturalness, transience, navigability, and mean depth. All produced inefficient search. Search efficiency for a property was
not correlated with its classification threshold time from M. R. Greene and A. Oliva (2009b). Differences in search efficiency
between properties can be partially explained by low-level visual features that are correlated with the global property.
Overall, while global scene properties can be rapidly classified from a single image, it does not appear to be possible to use
those properties to guide attention to one of several images.
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Introduction

A great deal has been learned about visual search using
laboratory displays of isolated items on homogeneous
backgrounds. In particular, we know that attention can be
guided by basic visual attributes such as the color,
orientation, and motion of the target (Wolfe, 1994).
However, the efficiency of search in real-world scenes is
unlikely to be explained by effective guidance by these
attributes alone. Although such features are likely to play
some role in guiding search in real-world scenes, they do
not completely account for the efficiency of these
searches. Search for objects in scenes seems to be very
efficient (Wolfe et al., 2008; though measures of ‘“effi-
ciency” depend on the problematic process of counting the
numbers of objects in scenes). In contrast, search through
isolated objects is quite inefficient (Vickery, King, &
Jiang, 2005) though guidance by basic features should be
similar in the two situations.

Of course, scenes have attributes that random arrays of
objects lack, such as lawful spatial layout. In this paper,
we investigate the role of global scene properties (Greene
& Oliva, 2009a, 2009b) in guiding search in images of
real-world scenes. Global properties are features of scene
environments that describe an image’s spatial layout,
affordances, or surface properties. Some examples include
the mean depth of a scene, the degree to which an agent
could navigate freely in the scene, the proportion of
manufactured elements in the scene (naturalness), and the

doi: 10.1167/11.6.18

Downloaded from jov.arvojournals.org on 10/24/2024

Received January 10, 2011; published May 24, 2011

presence of movement, or transience in a scene’s
elements. Global properties are global in the sense that
they cannot be accurately predicted from local regions in
the image. They are attributes of an image, and not
necessarily the entire visual field. In other words, in order
to determine whether a certain scene affords navigation, it
is necessary to take the entire layout of the image into
account, independent of the size of the image. In contrast,
a local task, such as object detection, can be done from
only examining a small piece of the image. It is also of
note that there can be multiple levels of global and local
scene analyses. Consider a street scene containing a
pedestrian. The scene’s spatial layout is a global scene
property, and the pedestrian in that scene is a local
property. However, when considering the pedestrian, the
shape of this person is more global than one of his parts
(say an eye).

Human observers can very rapidly perceive global
properties. For example, observers can reliably discrim-
inate a panoramic, large-depth scene from an image
showing a close-up view of a single surface even if the
scene is presented for a mere 26 ms followed by a mask
(Greene & Oliva, 2009b). Moreover, these properties are
sufficient to predict a scene’s basic-level category (e.g.,
beach, forest, etc.; Greene & Oliva, 2009a). Getting a
rough description of a scene’s spatial layout and surfaces
could help preferentially allocate attention to regions of a
scene likely to contain an object of interest, therefore
reducing the effective set size of the scene. If this is a
beach, we know where to look for deck chairs.
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The rapid extraction of global scene properties could
occur in a number of different ways. Properties could be
processed “preattentively” in the sense that is similar to
color—a red item among green items will “pop-out” and
can be detected in a time that is essentially independent of
the number of green items. If global scene properties are
processed in a similar manner, we would expect that the
time required to determine the presence of a natural scene
image would be independent of the number of wurban
scene images presented. Alternatively, it could be that
observers are limited to the perception of one set of global
properties at a time. Thus, observers might rapidly
determine the depth, transience, and naturalness of this
image but slowly find a property in one of several images
if they might be required to shift their attention in order to
determine the properties of another image. Experiment 1
tested these possibilities using visual search methods.
Observers searched for a relatively small scene image
with a target global property (e.g., high transience) among
similarly sized distractor images without that property
(e.g., low transience). For four global scene properties:
naturalness, mean depth, navigability, and transience, we
found that search was inefficient, arguing against an ability to
process the global properties of multiple images in parallel.

Methods
Materials

Both poles of each global property (e.g., high transience
and low transience) were tested as targets. In order to ensure
that observers were searching for a target property and not a
particular image, 99 images exemplifying each global
property pole were selected as targets. The large number of
images ensured that participants could not overlearn a few
images but had to search for the global property of interest. A
larger image set also guarded against confounding low-level
image features for just a few images. All scene images were
used in Greene and Oliva (2009a, 2010) and had been rated
by independent observers as belonging to a particular
property pole. Images were in full color and were 256 by
256 pixels in size.

The experiment was run with MATLAB using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Observers

Sixteen observers took part in Experiment 1. All were
between the ages of 1855, had normal or corrected-to-
normal vision, and had no history of eye or muscle
disorders. All provided informed consent and were compen-
sated $10 for their time.
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Design and procedure

Each of the four global properties (naturalness, mean
depth, navigability, and transience) was tested in two
experimental blocks, with each pole of a property tested as
targets in an independent block for a total of eight blocks.
In other words, in the two blocks testing navigability,
highly navigable scenes were the targets in one block and
highly non-navigable scenes were the targets in the other.
In all blocks, distractor images were images from the
opposite pole of the target property (for example, urban
scenes for natural targets). Figure 1 shows examples of
targets and distractors for all experimental conditions. The
order of blocks was randomized and counterbalanced
across participants.

Participants were seated in a dimly lit room, 57.4 cm
from a 21-inch CRT monitor. At the beginning of each
block, participants received an instruction screen describ-
ing the target global property pole and providing examples
of target and non-target images. Following the instruction
screen, observers completed 170 trials for each target, with
the first 10 trials for practice. Targets were present in 50%
of trials, and each trial had between 1 and 4 images. The
center of each image was 3.2 degrees away from a central
fixation point. The background was mid-gray. Images
remained on the screen until observers gave a “present”
or “absent” response with a button press. Observers were
instructed to respond as quickly and accurately as possible
for each trial. Performance feedback was given after every
trial. The experiment lasted approximately 45 min.

Results

Trials with reaction times under 200 ms or over 4000 ms
were discarded from analysis. One observer had >20%
rejected trials and was discarded from analysis. For the 15
remaining observers, the rejected trials constituted less than
15% of total trials.

Reaction time

Figures 2a—2d show mean reaction time as a function of
set size for each of the four global properties. A main
finding is that search for each of the global properties was
inefficient. All slopes were significantly greater than zero
(all 1(14) > 2.75, all p < 0.05), with a mean target-present
slope of 52.3 ms/item (range 10.1-96.8) and a mean
target-absent slope of 77.4 ms/item (range 19.2-138.2).
There was a wide variation between target types. The
urban—natural distinction yielded the most efficient search
with urban among natural producing an average slope of
16 ms/item. Mean depth supported the least efficient
search with small among large depth producing a slope of
128 ms/item for target-present trials. These differences
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Figure 1. Sample scenes for each target global property pole. Each property is shown in a 2 x 2 square with 2 examples of the property’s
low pole shown in the top row and 2 examples of the property’s high pole shown in the bottom row.

produced a significant main effect of property on reaction
time (F(3,42) = 50.4, p < 0.001).

A second finding was that there were significant search
asymmetries (Treisman & Souther, 1985). Search for urban
targets among natural produced shallower slopes than
natural among urban (#(28) = 2.08, p < 0.05), search for
highly navigable images was more efficient than for non-
navigable images (#(28) = 5.09, p < 0.001), and search for
images with a high degree of transience was more efficient
than search for low-transience images (#(28) = 2.86, p <
0.01). Search slopes did not significantly differ between
large- and small-depth targets (#(28) = 1.14, p = 0.27).

Accuracy

Despite producing such inefficient search slopes, participants
were very accurate in their searches. Overall d’ was 3.31 (false
alarm rate: 3.7%). By property pole, d’ ranged from 3.1 for
large depth to 4.4 for natural. There was no main effect of
property pole on search accuracy (F(1,14) < 1).

Critically, set size did not significantly interact with
accuracy (F(9,126) < 1), suggesting that participants did
not become less accurate with increasing numbers of
images.
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Discussion

As noted earlier, global scene properties are readily
identifiable in a fully attended display. Indeed, observers
in Greene and Oliva’s (2009b) study could reliably
classify these specific images after 19—45 ms of viewing
time. Nevertheless, this experiment demonstrates that such
global properties do not support efficient search and,
therefore, do not appear to be sources of guidance. The
current results are not in dispute with Greene and Oliva
(2009b). The ability to rapidly classify a single, attended
property does not imply that the property should guide
search. To take a simple example, the digits “2” and “5”
can each be rapidly identified in isolation, but search
for a 2 among a field of 5s leads to inefficient search
(Kwak, Dagenbach, & Egeth, 1991). Furthermore, although
the categorization of a single object can be very rapid
(Grill-Spector & Kanwisher, 2005), search for a particular
object among others is not efficient (Biederman, Blickle,
Teitelbaum, & Klatsky, 1988; Vickery et al., 2005).
Likewise, search for material type is inefficient (Wolfe
& Myers, 2010) despite rapid classification of single
materials at the center of attention (Sharan, Rosenholtz, &
Adelson, submitted for publication).
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Figure 2. Reaction time as a function of set size for the four global properties: (a) Naturalness, (b) navigability, (c) transience, and (d) mean
depth. Circles show the case where one pole served as target. Squares show the other pole. Target-present trials are represented with solid
lines and target-absent trials with dashed lines. Error bars represent +1 SEM.

We cannot attribute search inefficiency to a failure to
understand the global scene properties. The high level of
accuracy in the search shows that once an image was
attended, the properties were perceived and then correctly
classified. Nor is the inefficiency due to a need to fixate
each item in order to categorize it. Given 3—4 fixations per
second, we do not begin to suspect a need for fixation
until target-present slopes are over 100 ms/item and this
only occurred for the mean depth conditions.

The inefficiency of global property searches suggests
that such properties cannot be extracted in parallel from
multiple images. In this case, what determines the rate of
global property search? One hypothesis would be that the
slope of the RT X set size function should be related to
the time required to identify a global property in a single
scene. An estimation of this time (viewing duration
required for 75% correct classification) was made by
Greene and Oliva (2009b). The relationship of the
identification time and the average slope is shown in
Figure 3. Although a more stringent test of this relation-
ship would compare identification times and slopes for
the same, individual observers, these between-observer,
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averaged results suggest that search slopes are not strongly
related to the time required to identify each item (r =
—0.10, p = 0.90). Identification of mean depth conditions
was not much slower than identification of natural and
urban scenes. However, search in mean depth conditions
yielded slopes many times less efficient than search in
naturalness conditions.

Nor is it obvious how to explain the search asymme-
tries. It is easier to find urban among natural, highly
navigable among non-navigable, and highly transient
among static than vice versa. Were one global property
pole to support efficient search, then we might follow the
argument that it is easier to find the presence of this “basic
feature” than to find its absence (Wolfe, Klempen, &
Dahlen, 2000). For example, it is easier to find a moving
stimulus among static distractors than vice versa because
it is easier to detect the presence of motion than its
absence (Dick, Ullman, & Sagi, 1987). However, this
logic does not hold when the easier of the pair of search
slopes is inefficient. In this case, all that can be said is that
it is easier to search through one type of scene when it is
the distractor than the other. In this case, that would mean
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Figure 3. Average search slope from Experiment 1 as a function
of 75% threshold for identifying a global scene property from
Greene and Oliva (2009b). Greene and Oliva only tested one of
the two poles in each category. Those values are shown with filled
symbols. The other pole is shown with open symbols.

that search for urban is easier than search for natural
because it is easier to reject natural stimuli when looking
for urban than vice versa.

More striking than the search asymmetries are the
differences between global scene properties. In particular,
search for urban and natural targets produced search
slopes that were shallower than those produced by other
property targets. In Experiment 2, we examined the extent
to which low-level image features account for the relative
ease of search for natural and urban scenes.

Although the search slopes for natural and urban scenes
were not particularly efficient, they were markedly more
efficient than the other searches of Experiment 1. With
complex stimuli such as scene images, the suspicion must
always be that some more basic attribute is driving
performance. To give a trivial example, if all natural
scene images were green and all urban scene images were
red, it would be unsurprising and uninformative to find
efficient search for natural among urban. No such blatant
confound exists, but Torralba and Oliva (2003) have
demonstrated that natural and urban scenes can be
distinguished on the basis of their global amplitude
spectra alone. Kaping, Tzvetanov, and True (2007)
showed that adaptation to spectral statistics from natural
and urban images produced robust aftereffects in the
perception of natural and urban scenes, and Joubert,
Rousselet, Fabre-Thorpe, and Fize (2009) demonstrated
that removal of diagnostic Fourier amplitude information
diminished accuracy and increased reaction time on a
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rapid natural-urban categorization task. Accordingly, in
Experiment 2, we tested the hypothesis that global
amplitude spectra supported the comparatively easy
search for natural and urban scenes. To remove this cue,
we presented observers with images whose amplitude
spectra were the average of all natural and urban scenes
from Experiment 1 (mean amplitude condition). In a
separate block, to test the sufficiency of the global
amplitude spectrum cue, we presented observers with
phase-randomized images, containing only the amplitude
spectra of the originals. The logic of Experiment 2 is
given as follows: if the Fourier amplitude spectrum is
necessary (or, at least, helpful) in efficient search for
natural among urban scenes and vice versa, then search
efficiency will be diminished for the mean amplitude
condition relative to the conditions using color and
grayscale images with normal amplitude spectra in
Experiments 1 and 2. If Fourier amplitude, by itself, is
sufficient to support this efficient search, then phase-
randomizing the stimuli should not markedly disrupt
search even though it turns scenes into seemingly
content-free textures.

Methods
Materials

All stimuli were created from the natural and urban
scenes used in Experiment 1. Four groups of images were
used: full-color original images, the same images pre-
sented in grayscale, phase-randomized images, and
images whose amplitude spectrum had been replaced with
the average amplitude spectrum from all 198 natural and
urban scenes. Examples of all four groups are shown in
Figure 4.

Observers

Nine observers took part in Experiment 2. All were
between the ages of 18-55, had normal or corrected-to-
normal vision, and had no history of eye or muscle
disorders. All provided informed consent and were
compensated $10 for their time. None of the participants
from Experiment 2 had taken part in Experiment 1.

Design and procedure

Participants completed eight experimental blocks,
searching for natural scene targets in 4 blocks and urban
scene targets in the other 4. Each observer viewed each of
the four types of images in separate blocks: color,
grayscale, phase randomized, and amplitude averaged.
As in Experiment 1, distractor images were from the
opposite global property pole as the target (urban for
natural and vice versa). The order of conditions was
randomized and counterbalanced across participants.
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Figure 4. Examples of (top) natural and (bottom) urban images used as targets for Experiment 2.

The procedure for Experiment 2 was otherwise identical
to Experiment 1.

Results and discussion

Trials with reaction times under 200 ms or over 4000 ms
were discarded from analysis; 1.3% of total trials were
rejected (less than 10% of trials from each observer).

Reaction time

Figure 5 shows target-present reaction times as a
function of set size for all conditions of Experiment 2.
Two points can be made here. First, Experiment 1 can be
replicated. Search for natural scene images among urban
or vice versa is not efficient even if it is more efficient than
search for the other global scene properties tested in the
first experiment. Second, the grayscale conditions shows
that the relatively efficient search for urban and natural
scene images in the first experiment was not based on a
color signal (#(34) = 1.45, p = 0.15). If anything, grayscale
images produced slightly more efficient search with urban
grayscale targets producing a slope of just 11 ms/item.
This finding is in agreement with others showing little
contribution of color to rapid scene understanding
(Delorme, Richard, & Fabre-Thorpe, 2000; Fei-Fei, Van
Rullen, Koch, & Perona, 2005), although the use of color
depends on stimuli and task (Castelhano & Henderson,
2008; Oliva & Schyns, 2000).

While the color signal does not seem to have been of
much use, observers used the Fourier amplitude signal.
When Fourier amplitude information was rendered non-
diagnostic in the average amplitude condition, search
slopes increased significantly to 55.4 msf/item (#(34) =
2.28, p < 0.05), suggesting that amplitude plays a role in
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with open symbols and urban scene targets are shown with
closed symbols. Error bars represent +1 SEM.
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Color Grayscale Mean amplitude Phase random
Natural Urban Natural Urban Natural Urban Natural Urban
Miss 3.7 2.6 3.2 5.0 3.2 229 20.2
F.A. 1.9 2.1 22 25 3.2 26.6 324

Table 1. Miss and false alarm rates (percentage) for all conditions in Experiment 2.

search for natural and urban scenes. The relative effi-
ciency of naturalness search, when compared to the other
global properties of Experiment 1, is partially mediated by
differences in the global amplitude spectra of natural and
urban images, as search became less efficient when this
information equated between targets and distractors in the
average amplitude condition, similar to the results found by
Joubert et al. (2009) for fully attended items. Obviously, the
amplitude spectrum was not the only usable signal. If it had
been the necessary signal, then equating it across urban and
natural scenes would have made search impossible.

Search for phase-randomized urban and natural scenes
was most inefficient, with an average slope of 64.1 ms/item.
Furthermore, the intercept for this condition was larger than
that of the color and grayscale conditions (#(34) = 3.43, p <
0.01), showing that search was slowed overall in this
condition. Note that the phase-randomized stimuli lack
spatial layout and recognizable objects, suggesting that
scene and object recognition mechanisms might be the
basis for search when amplitude spectrum information is
removed.

In fact, it might seem surprising that participants could
perform that phase-scrambled search condition at an above-
chance level at all. Without phase information, all semantic
information is destroyed, and the images look like textures
rather than scenes (see Figure 4). Indeed, the phase
spectrum of natural images has long been shown to be
more important than the amplitude spectrum for recogniz-
ing images (Piotrowski & Campbell, 1982). However, the
amplitude spectra information retained in these images
has been shown to be sufficient for computational models
to classify scenes as natural or urban (Oliva & Torralba,
2001; Torralba & Oliva, 2003) and may contribute to the
rapid detection of naturalness in fully attended images
(Greene & Oliva, 2009b; Joubert et al., 2009; Joubert,
Rousselet, Fize, & Fabre-Thorpe, 2007). Apparently, our
observers could make use of that information to categorize
stimuli well enough to perform at above-chance levels.

As in Experiment 1, urban targets produced shallower
search slopes (24.4 ms/item) than natural (60.9 ms/item)
in Experiment 2 (#(70) = 3.54, p < 0.01).

Accuracy

Overall performance was excellent, as in Experiment 1,
with an overall d’ of 4.01. This level of performance is
similar to that seen in the natural and urban targets in
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Experiment 1 (d’ = 4.28). The accuracy was not uniform
over conditions, however. There was a significant effect of
condition in this experiment (£(3,24) = 67.3, p < 0.001).
As shown in Table 1, while color, grayscale, and average
amplitude conditions had similar levels of performance
(miss and false alarm rates of 2-5%), observers were
substantially less accurate in searching for phase-randomized
images (miss and false alarm rates of 20-32%, d’' = 1.5).

There was no significant effect of set size on d’ (F(3,24) =
1.36, p = 0.28), indicating that, as in Experiment 1,
accuracy did not decrease with increasing numbers of
distractors. Furthermore, blocks of natural target trials
produced no more errors than blocks of urban target trials
(F(1,8) = 1.26, p = 0.29).

General discussion

Overall, we have shown that global scene properties do
not support efficient visual search. Differences in efficiency
between global properties cannot be explained by color, but
global Fourier amplitude spectrum appears to play a role.

The large deficits we have observed in performing global
property detection with increasing numbers of scenes
suggests that classification of global properties may be
limited to one image at a time. In some other natural scene
tasks such as animal detection, there is little performance
decrement when a second image is added (Fei-Fei et al.,
2005; Rousselet, Fabre-Thorpe, & Thorpe, 2002). How-
ever, in those tasks, performance does suffer at set sizes
above two (Rousselet, Thorpe, & Fabre-Thorpe, 2004).
Drewes, Trommershauser, and Gegenfurtner (2011) argue
that animal detection can occur over at least 8 locations in
the same scene, simultaneously, though this may be
showing that animal detection, like the properties used in
the present study, is a global process within a single scene.
Van Rullen, Reddy, and Koch (2004) found inefficient
visual search for scenes with animals with set sizes up to
16 images (40 ms/item). In the present data, there is a cost
even for the second scene as can be seen in the RT
differences between trials with set sizes 1 and 2.

Prior work has shown that global scene properties such
as mean depth, navigability, naturalness, and transience
can be rapidly classified by human observers in fully
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attended displays (Greene & Oliva, 2009b). This rapidly
extracted information may be used to help get semantic
category information from a scene (Greene & Oliva,
2009a, 2010). From there, the contextual information
provided by the semantic category may then help guide
search for objects in scenes (Neider & Zelinsky, 2006;
Torralba, Oliva, Castelhano, & Henderson, 2006). One
could imagine a “global precedence” effect (Navon, 1977)
in which a set of global scene properties is processed first
and guides subsequent processing. We have argued else-
where for a dual pathway account in which scene
information guides search in collaboration with basic
attributes such as color or motion (Wolfe, Vo, Evans, &
Greene, 2011). A search for a friend in a red coat would
be guided by scene context and by redness at the same
time.

The results of our two experiments indicate that the first
step in this chain, the act of rapid classification of global
scene properties, may be limited to one scene at a time. In
our normal interactions with the world, it may not be
much of a handicap if search for global properties is
generally inefficient. After all, while it may be valuable to
rapidly understand the current scene, it is rarely important,
outside of the laboratory, to rapidly understand two or
more scenes at the same time.

The fact that we are, typically, in one scene at a time
might lead one to ask if the present experiments have any
“ecological validity.” The task is, after all, artificial on
several levels. Observers are making decisions about
multiple images. Those images are very small compared
to the immersive nature of real-world environments.
Finally, localizing (in addition to detecting) a path in a
scene seems to be critically important in our interactions
in the world.

To begin with the last issue, visual search experiments
tend to produce similar results with localization or
presence/absence responses (e.g., Saarinen, 1996). While
it is true that the images used in this study occupied only a
small piece of the field, the same is true of almost any
study of scene perception except those using immersive
stimuli. The sizes used here are the same as the sizes used
in Greene and Oliva (2009a, 2009b). Moreover, scene
properties have been shown to be quite resistant to
changes in scale (Torralba, 2009) even if the spatial
frequency content is changing differently when you shrink
a picture than when you move farther away (Loftus &
Harley, 2005). Finally, there are instances when we do
confront multiple scenes: looking for a particular photo
among vacation pictures or seeking out a specific painting
in an art gallery. Returning to the issue of localization, one
might suppose that in these cases, one would like to know
where the navigable areas are in the scene in front of you.
It would be interesting to ask observers to find the
navigable path in an otherwise non-navigable scene.
Following Drewes et al.’s (2011) finding with animals, it
may be that we can efficiently localize a scene property
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within a single scene even if we cannot efficiently find that
property over a set of several images.
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