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Human scene categorization is characterized by its remarkable speed. While many visual and conceptual features have been
linked to this ability, significant correlations exist between feature spaces, impeding our ability to determine their relative
contributions to scene categorization. Here, we used a whitening transformation to decorrelate a variety of visual and concep-
tual features and assess the time course of their unique contributions to scene categorization. Participants (both sexes) viewed
2250 full-color scene images drawn from 30 different scene categories while having their brain activity measured through
256-channel EEG. We examined the variance explained at each electrode and time point of visual event-related potential
(vERP) data from nine different whitened encoding models. These ranged from low-level features obtained from filter outputs
to high-level conceptual features requiring human annotation. The amount of category information in the vERPs was assessed
through multivariate decoding methods. Behavioral similarity measures were obtained in separate crowdsourced experiments.
We found that all nine models together contributed 78% of the variance of human scene similarity assessments and were
within the noise ceiling of the vERP data. Low-level models explained earlier vERP variability (88ms after image onset),
whereas high-level models explained later variance (169ms). Critically, only high-level models shared vERP variability with
behavior. Together, these results suggest that scene categorization is primarily a high-level process, but reliant on previously
extracted low-level features.
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Significance Statement

In a single fixation, we glean enough information to describe a general scene category. Many types of features are associated
with scene categories, ranging from low-level properties, such as colors and contours, to high-level properties, such as objects
and attributes. Because these properties are correlated, it is difficult to understand each property’s unique contributions to
scene categorization. This work uses a whitening transformation to remove the correlations between features and examines
the extent to which each feature contributes to visual event-related potentials over time. We found that low-level visual fea-
tures contributed first but were not correlated with categorization behavior. High-level features followed 80ms later, provid-
ing key insights into how the brain makes sense of a complex visual world.

Introduction
Human scene processing is characterized by its high speed: not
only do observers require little viewing time to reliably

understand scene content (Greene and Oliva, 2009; Potter et al.,
2014), but scene-specific neural responses have also been
observed ,200ms after scene presentation (Thorpe et al., 1996;
Bastin et al., 2013; Ramkumar et al., 2016). However, we know
comparatively little about the processing stages that transform
the retinal image into a semantically rich categorical representa-
tion. Ongoing research has demonstrated that scene categories
can be distinguished on the basis of many types of features, rang-
ing from low-level visual properties, such as histogram statistics
of colors, edges, orientations, or Fourier metrics (Oliva and
Schyns, 2000; Torralba and Oliva, 2003; Hansen and Loschky,
2013; Walther and Shen, 2014), to mid-level representations,
including texture (Renninger and Malik, 2004); “bag of words”
representations describing the list of objects within scenes

Received Aug. 28, 2019; revised Apr. 18, 2020; accepted Apr. 23, 2020.
Author contributions: M.R.G. and B.C.H. designed research; M.R.G. and B.C.H. analyzed data; M.R.G. wrote

the first draft of the paper; M.R.G. and B.C.H. edited the paper; M.R.G. wrote the paper; B.C.H. performed
research.
The authors declare no competing financial interests.
This work was supported by National Science Foundation Grant 1736394 to M.R.G. and B.C.H., and James

S. McDonnell Foundation Grant 220020430 to B.C.H.
Correspondence should be addressed to Michelle R. Greene at mgreene2@bates.edu.
https://doi.org/10.1523/JNEUROSCI.2088-19.2020

Copyright © 2020 the authors

The Journal of Neuroscience, July 1, 2020 • 40(27):5283–5299 • 5283

https://orcid.org/0000-0002-0597-4715
mailto:mgreene2@bates.edu


(Greene, 2013); or geometric properties of spatial layout (Oliva
and Torralba, 2001; Greene and Oliva, 2009); to high-level prop-
erties, such as conceptual attributes (Patterson et al., 2014) and
affordances (Greene et al., 2016; Bonner and Epstein, 2018).
However, we do not know the relative contributing strengths of
each of these features to categorization, nor the time course of
their contributions.

A powerful way to examine feature contributions is to con-
sider each as a representational feature space (Edelman, 1998;
Gärdenfors, 2004; Kriegeskorte et al., 2008). In this framework,
each scene is considered a point in a high-dimensional space
whose dimensions correspond to individual feature levels within
the space. For example, in the feature space of objects, an office
can be described by the presence of objects within it, such as
“desk,” “monitor,” and “keyboard.” In the feature space of tex-
ture, the same scene would be described as a set of features
describing the grain of wood on the desk, or the pattern of the
carpet. Critically, such conceptual spaces can be used to make
predictions about the types of errors that an observer or model
will make about an image. For example, the object feature space
would predict that images that share objects with offices would
be frequently confused with offices (e.g., a desk and monitor
might be found in a college dorm room).

Despite the power of this approach, challenges remain in
assessing the relative contributions of low- and high-level features
(Groen et al., 2017; Malcolm et al., 2016), primarily because these
features are not independent. Consider removing a stove from an
image of a kitchen. This alteration not only changes the list of
objects in the scene, but also changes the scene’s spatial layout as
objects define the shape of a scene’s layout (Biederman, 1981).
Furthermore, this change also alters the distribution of low-level
visual features, such as colors and orientations that belonged to
the stove, and also changes the affordances of the space: it is much
more difficult to cook without the stove. Together, these intrinsic
correlations mean that we cannot easily interpret the use of any
particular feature, except in isolation from the others.

Here, we have addressed this problem by decorrelating a large
number of predictive models that ranged from low-level visual
properties to high-level semantic descriptors before analysis.
Additionally, we leveraged an optimized category selection pro-
cedure that enabled maximal differentiation between the
competing models across 30 different scene categories. Using
high-density EEG, we examined the relative power of each
encoding model to explain the visual event-related potentials
(vERPs) that are linked to scene categorization, as indexed via
multivariate decoding and behavioral similarity assessments.
Altogether, our results show a striking dissociation between fea-
ture processing and their use in behavior: while low-level features
explain more overall vERP variability, only high-level features
are related to behavioral responses.

Materials and Methods
Apparatus
All stimuli were presented on a 23.6 inch VIEWPixx/EEG scanning
LED-backlight LCD monitor with 1ms black-to-white pixel response
time. Maximum luminance output of the display was 100 cd/m2, with a
frame rate of 120Hz and a resolution of 1920� 1080 pixels. Single pixels
subtended 0.0373 degrees of visual angle as viewed from 32 cm. Head
position was maintained with a chin rest (Applied Science Laboratories).

Participants
We conducted the experiment twice, with a total of 29 observers volun-
teering across the two studies. Fourteen participants (6 female, 13 right

handed) participated in the primary experiment. One participant’s EEG
data contained fewer than half valid trials following artifact rejections
and were therefore not included in subsequent analysis. Fifteen observers
(9 female, 12 right handed) participated in an internal replication study
(also presented here). The age of all participants ranged from 18 to
22 years (mean age 19 years). All participants had normal or corrected-to-
normal vision as determined by standard ETDRS acuity charts. The exper-
imental protocol was approved by the Colgate University Institutional
Review Board, and all participants provided written informed consent
before participating and were compensated for their time.

Stimuli
The stimulus set consisted of 2250 color photographs taken from 30 dif-
ferent scene categories (75 exemplars per category), within the SUN
database (Xiao et al., 2014). Category selection was conducted as to
ensure maximally different representational dissimilarity matrices
(RDMs) across three different feature types: visual features, defined as
activations from the penultimate layer of a pretrained deep convolu-
tional neural network (dCNN) (Sermanet et al., 2013); object features,
defined as a bag-of-words model over hand-labeled objects (Fei-Fei and
Perona, 2005; Lazebnik et al., 2006); and functional features, defined as
hand-labeled scene affordances, taken from the American Time Use
Survey (Greene et al., 2016). The optimization procedure was inspired
by the odds algorithm of (Bruss, 2000). Specifically, we created 10,000
pseudorandom sets of 30 categories balanced across superordinate scene
category (10 indoor, 10 urban outdoor, 10 natural landscape). RDMs for
each of the three models were constructed, and the intermodel correla-
tions were recorded. After this initial set of observations, we continued
to create pseudo-random category sets until we observed a set with lower
intermodel correlations than anything previously observed. The number
of categories was determined by balancing the desire to represent the full
diversity of visual environments, with the need to keep the experiment
of manageable length.

We selected 75 images per each of the 30 scene categories. When
possible, these were taken from the SUN database. In other cases, we
sampled additional exemplars from the Internet (copyright-free images).
Care was taken to omit images with salient faces in them. All images had
a resolution of 512� 512 pixels (subtending 20.8 degrees of visual angle)
and were processed to possess the same root-mean-square contrast
(luminance and color) as well as mean luminance. All images were fit
with a circular linear edge-blurred window to obscure the square frame
of the images, thereby distributing contrast changes around the circular
edge of the image (Hansen and Essock, 2004).

Human scene category distance measurement
In order to model category distances from human behavior, we con-
ducted a series of six experiments on Amazon’s Mechanical Turk
(mTurk) marketplace. This was necessary because the long image pre-
sentation time in the EEG experiment (750ms) led to ceiling-level cate-
gorization performance. Each behavioral experiment assessed observers’
judgments of scene similarity by presenting three items and asking the
observer to choose the odd-one-out. Although this task specifically
queries similarity, it has recently been shown to reveal hierarchical cate-
gory representations of objects (Zheng et al., 2019). Thus, we use it here
as a measure of scene categorization behavior.

The first experiment queried 608 participants about scene similarity
without constraining the definition of similarity. The other five experi-
ments asked participants to determine scene similarity with respect to
one of five features: global orientation (N=202), texture (N= 176),
objects (N= 104), functions/affordances (N=99), and lexical (N=820).

For all experiments, participants were selected from a pool of United
States-based workers who had previously completed at least 1000 hits
with an approval rating of at least 95%. Each participant was able to
complete as many hits as they wished, and each hit consisted of 20 trials.
Each participant completed between 1 and 227 hits (median: 2 hits). We
collected a total of 5000 hits for the unconstrained similarity experiment,
and 1000 in each of the other five experiments. Thus, a minimum of 24
participants rated each category triad in the unconstrained experiment,
and 5 participants per triad in the remaining experiments.
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With the exception of the lexical similarity experiment, all experi-
ments were identical, although each had a different definition of similar-
ity. Each trial consisted of three images from three unique categories.
These images were presented side by side in a single row. The participant
was instructed to click on the image that was the least similar to the other
two, given the particular similarity instructions for that experiment
(Zheng et al., 2019). For the lexical experiment, images were replaced
with the name of the scene category on a blank gray background. Each
hit was completed in a median work time ranging from 104 s in the tex-
ture experiment to 159 s in the orientation experiment, and participants
were compensated $0.10 per hit for their time.

From these responses, for each experiment, we created a 30-category �
30-category distance matrix as follows. Beginning with a 30� 30 matrix
of zeros, for each trial of each hit, we added one to the matrix entry rep-
resenting the row of the selected category and each column of the two
alternatives. This represents the participant’s judgment that the selected
image was dissimilar to the other two. We then subtracted one from the
matrix entry representing the nonselected alternatives. This represents
the participant’s judgment that the two nonselected images were deemed
to be more similar to one another. The final distance matrix was normal-
ized to be between 0 and 1, and the off-diagonal entries were saved to
become a regressor in subsequent analyses.

EEG experimental procedure
Participants performed a three-alternative forced choice categorization
task on each of the 2250 images across two ;50 min recording sessions.
All images within each category were randomly split into two sets, and
the image set was counterbalanced across participants. Within both sets,
image order was randomized.

Each trial commenced with a 500ms fixation followed by a variable
duration (500-750ms) blank mean luminance screen to allow any fixa-
tion-driven activity to dissipate. Next, a scene image was presented for
750ms followed by a variable 100-250ms blank mean luminance screen,
followed by a response screen consisting of the image’s category name
and the names of two randomly selected distractor category names pre-
sented laterally in random order. Observers indicated category choice by
clicking on the appropriate category name with a mouse.

EEG recording and processing
High-density 256-channel EEGs were recorded in a Faraday chamber
using Electrical Geodesics (Phillips Neuro) Geodesic EEG acquisition
system (GES 400) with Geodesic Hydrocel sensor nets (electrolytic
sponges). The online reference was at the vertex (Cz), and the impedan-
ces were maintained at,50 kV (Electrical Geodesics amplifiers are high
impedance). All EEG signals were amplified and sampled at 1000Hz.
The digitized EEG waveforms were first highpass filtered at a 0.1Hz cut-
off frequency to remove the DC offset, and then lowpass filtered at a
45Hz cutoff frequency to eliminate 60Hz line noise.

All continuous EEGs were divided into 850ms epochs (100ms
before stimulus onset and 750ms of stimulus-driven response). Trials
that contained eye movements or eye blinks during data epochs were
excluded from analysis. Additionally, all epochs were subjected to algo-
rithmic artifact rejection whereby voltages .6100mV or transients
.6100mV were omitted from further analysis. These trial rejection rou-
tines resulted in no more than 10% of trials being rejected from any one
participant. Each epoch was then rereferenced offline to the net average
and baseline-corrected to the last 100ms of the blank interval that pre-
ceded the image interval. Grand average vERPs were assembled by aver-
aging all rereferenced and baseline-corrected epochs across scene
category and participants.

For both encoding and decoding analyses, we improved the signal-
to-noise ratio of the single-trial data by building “supertrials” by averag-
ing 20% of trials within a given category, drawn randomly without
replacement (e.g., Isik et al., 2014; Cichy et al., 2016). This process was
repeated separately for each participant. This approach is desirable as we
are primarily interested in category-level neuroelectric signals that are
time-locked to the stimulus.

Topographic plots were generated for all experimental conditions
using EEGLAB (Delorme and Makeig, 2004) version 13.5.4b in

MATLAB (version 2016a, The MathWorks). Source localization was
conducted via Electrical Geodesics’ GeoSource 3.0 source-imaging pack-
age and corresponding Geodesic Photogrammetry System. Individual
head models were obtained from each participant using the photogram-
metry system and solved using GeoSource 3.0 software. The dense array
of Geodesic sensor locations obtained from each participant enables
high-resolution finite difference method conformal MRI atlas head mod-
els (Li et al., 2016) and demonstrably high source localization accuracy
(Kuo et al., 2014; Song et al., 2015). Here, the inverse problem was solved
using the inverse mapping constraint LORETA with a regularization
a =�3.

Decoding procedure
Before analysis, all data were downsampled to 500Hz to speed computa-
tion. For each participant, scene category decoding was conducted on an
electrode� electrode basis in 41ms windows centered at each time point
(i.e.,620ms around and including the given time point). Given that the
window could not extend beyond the 750ms image period, the analysis
was truncated at 730ms. Scene category decoding was conducted using a
linear one-versus-all multiclass support vector machine, implemented in
MATLAB’s. Statistics and Machine Learning Toolbox (version 10.0).
Accuracy of the support vector machine decoder was measured using
fivefold cross-validation, and empirical 95% CIs for decoding accuracy
were calculated across participants along the main diagonal of the
30� 30 decoder confusion matrix.

Encoding models
We used a total of nine different encoding models, representing a range
of visual and conceptual features. Models were chosen for inclusion in
this study because they have been shown to explain significant variance
in brain or behavioral data, rather than for biological plausibility per se.
The models fall into four broad classes: three models represent outputs
of multiscale Gabor wavelet pyramids, or their derivatives (Wavelet,
Gist, and Texture); two models represent activation outputs from a
dCNN that used the eight-layer “AlexNet” architecture (Krizhevsky et
al., 2012) and was pretrained to perform scene classification on the
Places database (Zhou et al., 2018). For these models, we chose one
lower-level convolutional layer (Conv2), as well as one higher-level fully
connected layer (FC6). In order to represent higher-level visual informa-
tion that we cannot yet obtain directly from images, three models were
included whose features were obtained by human ratings (Objects,
Attributes, and Functions). Last, we considered the semantic similar-
ity across scene categories, operationalized as the lexical distance
between category names. For each model except lexical distance,
RDMs were created by computing the distance between each pair of
categories in the given feature space using the 1 – correlation distance
metric (Spearman’s r ).

Filter models
Wavelets. In order to encode the low-level structural details of each

scene, we used the outputs of a multiscale bank of log-Gabor filters
(Field, 1987) that decompose an image by spatial frequency, orientation,
and spatial location. Such encoders are well-established models of early
visual cortex (e.g., Carandini et al., 2005), as well as front ends to
machine vision systems (Simoncelli and Freeman, 1995). Each image
was converted from RGB to L*a*b color and passed through a bank of
log-Gabor filters at seven spatial frequencies (0.125, 0.25, 0.5, 1, 2, 4, and
8 cycles per degree) and four orientations (0, 45, 90, and 135 degrees).
The filters had a spatial frequency bandwidth of;1.5 octaves, assessed at
full width at half height. Thus, each of the three L*a*b channels was rep-
resented by 28 filter outputs, for a total of 84 features per image. We aver-
aged features across images within a category to create a 30-category �
84-feature matrix.

Gist. Each image was described with the spatial envelope (or Gist)
descriptor of Oliva and Torralba (2001). These features represent a sum-
mary statistic representation of the dominant orientation contrast at
three different spatial frequencies localized in an 8� 8 window grid
across the image. The number of orientations varies with spatial fre-
quency, with 8 orientations at the highest frequency, 6 in the mid-range,
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and 4 at the lowest, for a total of 1152 features [64 windows � (81 6 1
4) orientations per scale]. These features have been shown to explain sig-
nificant variance in fMRI and MEG responses throughout visual cortex
(Ramkumar et al., 2016; Watson et al., 2014, 2017). Given their similarity
to the log-Gabor filters described above, following (Oliva and Torralba,
2001), we used linear discriminant analysis to learn weights on the filter
outputs that were optimized for classifying the 30 scene categories of this
database. We averaged across images in each category to create a 30-cat-
egory� 1152-feature matrix.

Texture. Texture features for each image were encoded using the
generative texture model of Portilla and Simoncelli (2000). This algo-
rithm analyzes a total of 6495 statistics from an image, including mar-
ginal pixel statistics, wavelet coefficient correlations, wavelet magnitude
correlations, and cross-scale phase statistics. Scenes can be distinguished
by their texture properties (Renninger and Malik, 2004), and texture
properties have been reported to drive activity in both early visual areas,
such as V2 (Freeman and Simoncelli, 2011), as well as the parahippocam-
pal place area (Cant and Goodale, 2011; Lowe et al., 2017). As before, we
averaged across images in a category to create a 30-category � 6495-fea-
ture matrix.

Deep CNN features
We extracted the activations from two of the eight layers in a dCNN
(Conv2 and FC6 from a CNN trained on the Places database) (Zhou et
al., 2018), using the AlexNet architecture (Krizhevsky et al., 2012), and
implemented in Caffe (Jia et al., 2014). This CNN was chosen because it
is optimized for classification of 205 scene categories and because this
eight-layer architecture is most frequently used when comparing CNNs
with brain activity (Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte,
2014; Güçlü and van Gerven, 2015; Cichy et al., 2016, 2017; Kubilius et
al., 2016; Bonner and Epstein, 2018; Greene and Hansen, 2018). We
chose Conv2 and FC6 as the layers of interest because they have been
argued to represent typical low- and high-level feature information,
respectively, and have previously demonstrated fundamentally different
encoding behavior with EEG data (Greene and Hansen, 2018). In the
Conv2 layer, 256 5� 5 pixel filters are applied to the input with a stride
of one pixel, and padding of two pixels, for a total of 27 � 27 �
256= 186,624 features. The sixth and seventh layers of AlexNet are fully
connected, meaning that they have no retinotopic information, and were
designed to have 4096 features each. For both layers, we averaged across
images within each category, creating a 30-category � 186,624-feature
matrix for Conv2 and a 30-category� 4096-feature matrix for FC6.

Models of conceptual features
Objects. We used a bag-of-words object representation used by

Greene et al. (2016). Each object or region in each scene was hand-la-
beled using the LabelMe tool (Russell et al., 2008). Objects are features
that can be diagnostic of scene category (Greene, 2013), and have been
reported to drive activity across occipitotemporal cortex (MacEvoy and
Epstein, 2011; Harel et al., 2013). Across the image set, there were 3563
unique object labels. We created a 30-category � 3563-object matrix
that stores the proportion of scenes in each category i containing each
object j.

Scene attributes. We took the measured attribute vectors of
Patterson et al. (2014). The attributes were obtained by asking human
observers to list features that made pairs of images different from one
another in a massive online norming experiment. The resulting attrib-
utes consist of a heterogeneous set of 112 descriptors, including aspects
of region, material, and spatial layout. In a second round of normative
ratings, Patterson et al. (2014) asked human observers on mTurk to rate
each scene in the SUN database according to 112 different attributes.
Thus, each scene’s attribute rating is the proportion of mTurk observers
selecting that attribute as appropriate for that scene. As before, we aver-
aged attribute descriptions across category, resulting in a 30-category �
112-feature matrix.

Functions/affordances. Scene functions were operationalized as a
description of the set of actions that a person could perform in each
environment. As with the attributes, these vectors were also created by
workers on mTurk who annotated which of 227 actions in the American

Time Use Survey could be done in each of the scenes. Scene functions
have been shown to explain the majority of variance in scene categoriza-
tion behavior (Greene et al., 2016; Groen et al., 2018). The final feature
matrix consisted of a 30-category � 227-feature matrix in which each
cell stored the proportion of images in a given category i linked to a spe-
cific action j.

Model of semantics
Lexical distance
Last, we included a model of semantic distance between category names,
as semantic distance has been demonstrated to affect early processing
and reaction times to objects and scenes (Neely, 1977). The semantic dis-
tance between categories was operationalized as the shortest path
between category names in WordNet (Miller, 1995), as implemented by
the Wordnet::Similarity tool (Pedersen et al., 2004).

Time-resolved encoding procedure
In order to compare vERP trial data with each of the models in a common
framework, we used representational dissimilarity analysis (Kriegeskorte
et al., 2008). With this approach, we examined category similarity with
respect to each of the nine feature spaces to scene category similarity with
respect to time-resolved vERP activity at each electrode.

Model RDMs
For each of the nine models, we created a 30� 30-category correlation
matrix from the feature matrices described above. RDMs were defined
as 1 – Spearman’s r . Importantly, RDMs are symmetric with an unde-
fined diagonal. Therefore, only the lower triangle of each RDM was
included in the analysis, representing 435 pairs of category distances. As
shown in Figure 1, substantial correlations exist between each of the
nine models. Therefore, we used a whitening transformation (Bell and
Sejnowski, 1997) to decorrelate the feature spaces. Specifically, for each
feature vector x, we sought to obtain a new feature vector z that is uncor-
related to the other feature vectors. The linear transformation that can
achieve this is as follows:

z ¼ Wx

In order to decorrelate each feature, the whitening matrix W must
satisfy the following:

WTW ¼ R�1

Under these conditions, the covariance matrix R of z is equal to the
identity matrix. However, there are multiple whitening matrices that
would achieve this transformation. Following Kessy et al. (2017), we
opted for the zero-phase component algorithm (ZCA) as it was found to
provide sphered components that were maximally similar to the original
data. In the ZCA algorithm, the whitening matrix is forced to be sym-
metrical (i.e.,WT ¼ W), andW ¼ R�1=2. In order to visualize the scene
category similarity structure for each of the nine whitened feature spaces,
Figure 2 shows 2D multidimensional scaling solutions for each feature
space.

Neural RDMs
For each participant, we averaged vERPs across trials within the same
category and then normalized the resulting averages. For each electrode,
we extracted vERP signals within a 41ms window centered on each time
point, beginning 100ms before scene presentation, and extending to the
entire 750ms of stimulus presentation, truncating the window as neces-
sary if the entire 41ms was not available in an epoch. Thus, each window
consisted of a 41 time point � 30 category matrix. From this matrix, we
created a 30� 30 RDM using the same 1 – Spearman metric described
above. As before, the lower triangle of this matrix (435 points) was used
as the dependent variable in the regression analyses.

Computing noise ceiling
In order to quantitatively assess model fits, we computed the noise ceil-
ing of our data, following the methods of Nili et al. (2014). Briefly, the
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upper bound of the noise ceiling is an overfit value representing the
explained variability of the group mean to predicting an individual ob-
server whose data are included in the groupmean. The lower bound rep-
resents the explained variability of the group mean when the predicted
observer is left out of the group mean. This procedure was performed in-
dependently at each time point.

Electrode selection
As the primary goal of this study is to examine the genesis of scene category
representations, for the encoding analyses, we selected only the electrodes
containing significant category information from decoding. Specifically, we
used the decoding accuracies for each electrode to select electrodes for
encoding analyses that had accuracy values above the 95% CI of the presti-
mulus baseline for at least 10 continuous milliseconds. This amounted to an
average of 248 electrodes per participant (range: 232-256). We averaged
across these electrodes for all subsequent encoding analyses.

Statistical analysis
For all encoding analyses, we used a jackknife approach to obtain stable
maximum R2 and latency of maximum R2 values for each participant.

This was done by iteratively leaving out one of the participants in turn,
and then computing the statistic of interest. The maximum R2 values for
each participant were therefore defined as the maximum R2 from the
mean of the remaining 12 of 13 participants, and the latency of the maxi-
mum was defined as the time point when this maximum was observed.
All F and t values were corrected using the methods suggested by Luck
(2005): namely, that t values were divided byN – 1, and F values were di-
vided by (N – 1)2. Group-level significance was assessed via sign test.
Post hoc t tests were corrected for multiple comparisons across time
points and models using the Benjamini-Hochberg procedure.

Results
We begin by establishing the role of our nine whitened features
in human scene categorization (see Feature use in scene categori-
zation behavior) and show the consistency of our vERP results
with the existing literature (see vERP data summary). We then
establish the availability of scene category information in vERP
data using time-resolved decoding (see Time-resolved decoding).
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Figure 1. a, Correlations between the nine original features. b, Covariance before ZCA whitening transformation. c, Correlations after ZCA whitening transformation. d, Correlations between
original and whitened features. Gist features are the significant outlier.
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Finally, we assess the extent to which the nine whitened features
map to vERP data over time and across task (see Time-resolved
encoding and beyond) to gain insight into the representational
transformations that enable rapid scene categorization.

Feature use in scene categorization behavior
Predicting unconstrained similarity judgment from feature
spaces
We began by establishing the extent to which observers use each
of the nine whitened feature models in the unconstrained simi-
larity task. As the long stimulus presentation time (750ms) in
the EEG experiment led to ceiling-level categorization perform-
ance, we used the scene similarity results from mTurk (see
Human scene category distance measurement) as a proxy for
categorization behavior. Although each of the nine feature mod-
els in this study has been strongly associated with scene

categorization behavior, this first step ensures that this holds
when the features have been whitened. Further, as most studies
only examine a few features in isolation, this analysis shows the
extent to which each feature contributes to scene category
representations.

Collectively, the nine whitened feature RDMs predicted 78%
of the variance (adjusted R2) in the behavioral RDM obtained
from the mTurk participants in the unconstrained experiment
(F(9,425) = 163.8, p, 0.0001). The b coefficients, partial R2, and p
values for each of the RDMs are shown in Table 1.

Most whitened feature RDMs had significant predictive
power for the unconstrained behavioral RDM. The two excep-
tions were the Gist features and the early dCNN layer (Conv2).
However, as the Gist features were most transformed by the
whitening procedure (see Fig. 1), we are not strongly interpreting
this result. Lower-level features, including the filter-based models

Filter- Based Models

DNN Models

Human-in-loop Models

erutxeTtsiGrobaG

6CF2vnoC

etubirttAtcejbOnoitcnuF

Semantic Model
Lexical

Figure 2. Representation of each of the nine whitened feature spaces. To aid visualization, one representative image from each of the 30 categories is used to plot the category’s location in
a 2D multidimensional scaling solution.
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and the early dCNNmodel, were less predictive of unconstrained
similarity judgments than the higher-level models. Replicating
previous observations, the function-based model was more pre-
dictive of scene similarity assessments than the object-based
model (Greene et al., 2016; Groen et al., 2018). However, the two
most predictive models were the upper-layer features of the
dCNN (FC6) and the attributes model of Patterson et al. (2014).

The attribute model is itself a combination of four different
feature types: affordances, materials, surfaces, and spatial proper-
ties. Therefore, it is not terribly surprising that it did so well com-
pared with individual feature spaces. In order to break down its
predictive power, we created four separate RDMs corresponding
to the four different types of attributes outlined by Patterson et
al. (2014): functions/affordances (36 features), materials/objects
(36 features), surface properties (12 features), and spatial layout
properties (14 features). We used these four as regressors for the
human response RDM as before. Collectively, the four aspects of
the attributes predicted 68% of the variance (adjusted R2) in the
human RDM (F(4,430) = 231.3, p� 0.0001). Table 2 shows b
coefficients, partial R2, and p values for each of the four.

Overall, affordances were the most predictive attribute type,
followed by the “spatial envelope” properties which consisted of
spatial layout properties, such as openness, mean depth, and level
of clutter. By contrast, material properties, such as vegetation,
asphalt, or metal, as well as surface properties, such as dry, aged,
or dirty, contributed comparatively little to the behavioral RDM.
Together, these results validate the use of these nine models for
explaining variability in scene similarity and categorization
behavior, consistent with previous results.

Predicting feature-based similarity judgments from feature
spaces
Next, we examined how changing the observer’s similarity task
alters feature use in the five feature-based similarity experiments.
These similarity experiments yielded RDMs that were highly cor-
related with one another (mean r=0.82, range: 0.67–0.94). In
order to focus on the independent predictions made by these
experiments, we combined the RDMs for each of the five experi-
ments into a single data matrix (435� 5) and performed the
same whitening transform on this matrix, using the same proce-
dure that we used for the feature matrix (see Model RDMs). The
resulting whitened RDMs were all highly correlated with the
original results (mean r= 0.73, range: 0.66–0.85), while becoming
uncorrelated with one another.

As with the unconstrained similarity task, each of the five
task-driven experiments were well predicted by the nine whit-
ened features: R2 values ranged from 0.61 for the lexical task to
0.75 for both functions/affordances and object tasks. Table 3
shows partial R2 for each feature for each of the five task-driven
experiments. In general, we observed that, in each experiment,

the pattern of feature use was highly correlated with the
unconstrained similarity task (range: r = 0.95 for orientation
and lexical to r = 0.99 for objects and functions). That said,
there were also substantial task-driven differences, with
higher partial R2 values observed for features that were task-
relevant (wavelets for the orientation task, functions for the
function/affordance task, and lexical features in the lexical
task). One exception seems to be texture and object that
appear to be switched in importance.

In order to understand feature use across the five experi-
ments, we isolated the five most relevant features from the nine
feature spaces: wavelets, which should be most similar to the ori-
entation task, texture statistics for the texture task, object features
for the object task, functions for the functions/affordances task,
and lexical for the lexical task. Figure 3 shows the regression
coefficients for each of the five features (different plots) across
the five experiments (different bars). With the exception of the
object features, each feature had the highest regression weight for
the predicted experiment. This result establishes that feature use
differed across experimental task, and that specifically, a feature
was used more when observers were asked to assess scene simi-
larity with respect to that feature.

vERP data summary
In this section, we examined the general spatiotemporal struc-
ture of the vERPs. Grand average vERPs and topographic plots
are shown in Figure 4a. The topographic plots show the typi-
cal voltage difference scalp topography for observers engaged
in viewing complex visual scenes (e.g., Hansen et al., 2011,
2012; Groen et al., 2012). Figure 4b shows the source localiza-
tion results at select time points. The spatiotemporal evolution
of the vERP sources is consistent with previous MEG studies
in scene perception (e.g., Ramkumar et al., 2016) and shows a
gradual progression over time from primary visual cortices
through bilateral occipitotemporal cortices, with apparent an-
terior temporal and ventral frontal cortices late. Therefore, the
similarity between the spatiotemporal features of the current
data with previously reported results contextualizes the subse-
quent modeling and decoding results within the broader
MEG/EEG literature.

Table 1. Regression coefficients, partial R2, and p values for each of nine fea-
ture RDMs in predicting dissimilarity matrix from human observers’ rankings

Feature Beta Partial R2 p

Wavelets 0.014 0.016 0.009
Gist 0.005 0.002 0.34
Texture 0.011 0.009 0.047
Conv2 0.003 0.0008 0.55
FC6 0.121 0.543 ,2e-16
Functions 0.080 0.339 ,2e-16
Objects 0.034 0.084 9.7e-10
Attributes 0.141 0.615 ,2e-16
Lexical 0.024 0.044 1.09e-05

Table 2. Regression coefficients, partial R2, and p values for each of the four
attribute types that constituted the full attributes model

Model Beta Partial R2 p

Affordances 0.43 0.35 ,2e-16
Materials 0.17 0.07 1.22e-08
Surfaces 0.054 0.02 0.00559
Spatial envelope 0.17 0.12 4.28e-14

Table 3. Partial R2 for each feature (row) in each task-driven experiment
(column)

Feature Orientation Texture Object Functions Lexical

Wavelet 0.057 0.013 0.013 0.017 0.007
Gist 0.012 1e-05 0.002 0.0002 0.004
Texture 0.0008 0.0009 0.019 0.003 2e-5
Conv2 0.017 0.026 0.006 0.028 0.019
FC6 0.526 0.498 0.542 0.526 0.415
Functions 0.121 0.147 0.251 0.262 0.203
Objects 0.058 0.108 0.009 0.090 0.040
Attributes 0.466 0.597 0.566 0.569 0.298
Lexical 0.017 0.003 0.040 0.024 0.107
Total R2 0.70 0.74 0.75 0.75 0.61
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Time-resolved decoding
Our main goal is to examine the representational transforma-
tions that take place in the visual system en route to categoriza-
tion. In order to measure the amount of scene category
information available in vERPs over time, we used a time-
resolved decoding procedure on vERPs. Figure 5 shows decoding
performance across all electrodes over time. Significant category
decoding was observed in nearly all electrodes, with an average
of 248 of the 256 electrodes showing significant category infor-
mation. Category information was highest between 100 and
200ms after stimulus onset, with the maximum decodable infor-
mation found, on average, 198ms after stimulus onset (range:
142–214ms). This corroborates previous accounts of generalized
categorization taking place at or;200ms after stimulus onset.

Decoding analyses were performed on each electrode individ-
ually, allowing us to examine the pattern of decodable informa-
tion across the scalp. Specifically, we examined the differences in
decoding across electrodes by computing: (1) the maximum
decoding accuracy at each electrode and (2) the temporal latency
of this maximum value. In addition, we ordered electrode posi-
tion from anterior to posterior. We observed a sizable negative

correlation (r = �0.42, 95% CI: �0.52 to �0.31, t(12) = 2.71,
p, 0.05; see Fig. 5) between the maximum decoding perform-
ance and the latency of maximum decoding for an electrode.
This was also observed in the replication experiment (r = �0.42,
p, 0.0001). This may suggest that electrodes that carry the most
category information also have this information available earlier,
or that later neural responses are less time-locked to stimulus
presentation, driving down the amount of decodable category in-
formation. Further, we found that the overall decoding perform-
ance was correlated with electrode location from anterior to
posterior (r=0.21, 95% CI: 0.08-0.32, t(12) = 4.0, p, 0.001; see
Fig. 5), indicating that decodable category information was con-
centrated in posterior electrodes. An even more pronounced
effect was observed in the replication experiment (r= 0.45,
p, 0.0001).

Time-resolved encoding
All features
While the decoding analyses establish the amount of specific
scene category information available in the vERPs, the goal of
the encoding analyses is to establish the extent to which a variety
of visual and conceptual features collectively explain variability
in the vERPs. Together, the nine whitened models predicted sig-
nificant vERP variability in electrodes with significant category
information (see Fig. 6). The maximal explained variability
occurred 98ms after stimulus onset, on average, and was within
the noise ceiling for nearly the entire epoch. Interestingly, the
explained variance of the features was below the noise ceiling
between 176 and 217ms after image onset, the same time window
of maximum category decoding. This may suggest that, while
these nine features are explaining the perceptual processes leading
up to categorization, theymay not be capturing the categorization
process itself. For the replication experiment, we observed a simi-
larmaximumR2 (0.11 vs 0.10 inmain dataset), with a peak encod-
ing latency that was slightly earlier (74ms vs 98ms).

Unlike the case of decoding, we did not observe any relation-
ship between the maximum explained variability in a given elec-
trode and the latency of maximum explained variability (r =
�0.04, 95% CI: �0.16 to 0.08, t(12), 1; see Fig. 6). However, as
we observed in decoding, there was a reasonably strong spatial
relationship between electrode position (anterior to posterior)
and maximum R2 (r= 0.36, 95% CI: 0.25–0.47, t(12) = 3.08,
p, 0.01; see Fig. 6), indicating that these nine models could
best explain activity over the posterior electrodes. Similar results
were found in the replication experiment (r=0.36, t(14) = 2.07,
p, 0.05). Together, these results show that feature encoding is
earlier than category decoding, and also primarily driven by pos-
terior electrodes. Our next analyses will examine which specific
features predict variability in ERP signals.

Low-level versus high-level features
Among the nine features are those that can be computed directly
from image filters (low-level features) as well as those that
require human annotation (high-level features). In order to
understand the relative contributions of low- and high-level fea-
tures, we created two new whitened models using a subset of the
nine original models. The “low-level” model included all of the
filter-based models (Wavelet, Gist, and Texture), and the “high-
level” model contained all of the human-in-the-loop models
(Objects, Functions, and Attributes). We whitened each model
separately and performed the regression analyses on each.
Overall, we found that low-level features explained significantly
more variability than did the high-level features (0.07 vs 0.03,
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Figure 3. Feature use across the five similarity experiments. Each plot is a different fea-
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Figure 4. a, Grand averaged vERPs (left), and topographic plots (right) for key time points. b, Source-localization solutions from times ranging from 80 to 700 ms after stimulus.
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t(12) = 5.81, p, 0.0001, d=2.24; see Fig. 7). We observed a simi-
lar result in the replication experiment (0.05 vs 0.03, t(14) = 2.17,
p, 0.05, d=0.86). When examining the latency of maximum
explained variability, low-level models peaked 88ms after stimu-
lus onset, whereas high-level features peaked 169ms after stimu-
lus onset (t(12) = 3.18, p, 0.005, d=1.31). Similarly, low-level
models peaked 74ms after stimulus onset in the replication
experiment, whereas high-level models peaked at 159ms (t(14) =
4.62, p= 0.0002, d= 2.39). Thus, low-level features explain more
and earlier vERP variability, compared with the high-level fea-
tures. While this may suggest that high-level features are proc-
essed later, it may instead reflect the fact later processes are less
time-locked to stimulus onset, and that the increased temporal
variability results in a smaller overall effect, or that the neural
sources for these features are less accessible at the scalp.

Individual features
The previous analysis showed that low-level features, on average,
explained more and earlier variability in vERP responses. Here,
we took a closer look by examining the variability explained by

each of the nine whitened models individually (see Fig. 8). Table
4 shows the maximum R2 and the latency of maximum R2 for
each of the nine feature models. We submitted both of these
measurements to a one-way repeated measures ANOVA with
Model (nine features) as the factor. We found that maximum
R2 differed significantly across Model (F(8,96) = 7.65, p, 7.1e-8,
h 2 = 0.99). Overall, the Gist features explained the most variabil-
ity in ERPs (R2 = 0.026), and explained significantly more vari-
ability than all other features, except for Wavelet (t(12) = 1.72,
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Figure 8. R2 values for each of the nine whitened feature models for explaining vERPs,
averaged over all electrodes with significant category information.

Table 4. Maximum R2 and latency of maximum R2 for each of the nine encod-
ing models

Model Maximum R2 Latency of maximum R2

Wavelet 0.015 69
Gist 0.026 85
Texture 0.014 100
Conv2 0.023 104
FC6 0.015 205
Function 0.009 135
Object 0.009 238
Attributes 0.008 183
Lexical 0.007 146
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p=0.06) and Conv2 (t(12), 1). In a similar manner, Conv2
explained more variability than Wavelet (t(12) = 2.22, p, 0.05,
d=0.64), Texture (t(12) = 2.43, p, 0.05, d=0.98), FC6 (t(12) = 2.34,
p , 0.05, d=0.90), and all of the high-level visual features.
Texture had higher explained variance than each of the high-level
visual features. We did not observe any significant differences in
explained variability among the high-level features. We observed
the same main effect of Model on maximum R2 in the replication
experiment (F(8,112) = 5.77, p, 3.7e-6, h 2 = 0.98), and we further-
more observed a high correlation between maximum R2 values
between the two experiments (r=0.81, t(7) = 3.7, p, 0.008).
Although we observed a numerical tendency for lower-level mod-
els to have earlier maximum explained variability, this pattern was
not statistically reliable (F(8,96), 1). This was also observed in the
replication experiment (F(8,112), 1).

Linking encoding and behavior
Linking vERPs to scene similarity assessment
While the previous encoding analyses examine the extent to
which various features explain vERP responses, they do not

provide insight into which parts of the responses are behaviorally
relevant. To bridge this gap, we first used the behavioral RDM
from the unconstrained scene similarity experiment to predict
the vERP RDMs. Figure 9 shows the variability explained over
time. We observed an early correspondence of behavioral simi-
larity and neural similarity: the peak R2 occurred 219ms after
stimulus. The mean maximum explained variability was 0.0093
(18.6% of noise ceiling lower bound vs 0.008 in the replication
experiment), with an earlier secondary peak occurring at
;175ms after stimulus onset. In the replication experiment,
only the earlier peak was evident at 178ms after image onset.

In order to determine how each of the task-driven similarity
assessments is reflected in the vERPs compared with the uncon-
strained similarity task examined above, we used each of the five
whitened behavioral RDMs from the task-driven similarity
experiments as regressors for the vERPs. As shown in Figure 10,
although using a greater variety of behavioral predictors led to
greater explained variability (maximum of 0.0093 for uncon-
strained similarity experiment vs a maximum of 0.027 for the
five task-driven experiments, t(12) = 9.38, p, 3.6e-07, d=0.91),
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trodes. Point color represents electrode position in the net. Solid lines indicate statistically significant explained variability over baseline (sign permutation test).
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the time course of the two analyses is strik-
ingly similar, with peaks of explained vari-
ability at ;175ms and 225ms after
stimulus onset. Similar results were found
in the replication experiment (maximum
R2: 0.027, peak latency: 178ms). As shown
in Figure 10 (right), the earlier peak was
driven primarily by posterior electrodes,
whereas the later peak was driven more by
anterior electrodes, as was observed in the
unconstrained similarity experiment.

While the previous analysis indicated
that all five task-driven similarity experi-
ments explained vERPs in a similar manner
as the unconstrained similarity experiment,
here we examined each of the five feature-
driven similarity experiments individually.
As shown in Figure 11, each experiment
produced a unique profile of explained
vERP variability. We performed a one-way
ANOVA on the maximum explained vari-
ability for each of the five experiments and
found that there were significant differences
across behavioral experiments in the main
EEG experiment (F(4,48) =3.97, p=0.0007,
h 2 = 0.97), as well as the replication experi-
ment (F(4,56) =2.63, p, 0.05, h 2 = 0.96).
Follow-up t tests revealed that the lexical
experiment explained significantly more var-
iability than the orientation (t(12) =2.47,
p=0.015, d=0.98), texture (t(12) =2.02, p=
0.033, d=0.82), object (t(12) =2.28, p=0.021,
d=0.78), and function (t(12) =2.69, p=
0.0098, d=0.98) experiments. By contrast, a
one-way ANOVA examining differences in
peak latency did not reveal any significant
differences between the behavioral experi-
ments in either the main EEG experiment
(F(4,48), 1), nor the replication experiment
(F(4,56), 1).

Shared R2 between scene similarity assess-
ments and features on vERPs
Having established which portions of the
vERP response that are linked to scene cat-
egorization behavior, we can now examine
how vERP variability is shared by each of
the nine feature models and the behavioral
RDMs for both constrained and uncon-
strained experiments. This allows us to
examine when and how individual features
explain category-relevant portions of the vERP data. Beginning
with the unconstrained similarity experiment, Figure 12 shows
time-resolved plots of shared R2 for all feature models and
unconstrained similarity judgment over the time epoch. Table 5
shows maximum shared R2 and latency of maximum shared R2

values for each of the nine whitened features. We observed a sig-
nificant difference between features in the maximum shared var-
iability with unconstrained similarity judgments (F(8,96) = 17.91,
p=4.3e-16, h 2 = 0.99 in the main experiment and F(8,112) =
15.44, p=4.11e-15, h 2 = 0.99 in the replication experiment). The
maximum shared variability ranged from 0.00008 for the Conv2
model to 0.0049 for the FC6 model and was higher for high-level

models than low-level models (0.0018 vs 0.002, t(12) = 4.82,
p= 0.002, d= 1.72 in the main experiment; 0.002 vs 0.0002,
t(14) = 5.93, p=1.84e-05, d= 1.65 in the replication experiment).
The latency of maximum shared variance ranged from 168ms af-
ter stimulus for the Conv2 model to 235ms after stimulus for
Objects. These differences were not statistically reliable when
considering all nine models (F(8,96), 1 in the main experiment
and F(8,112), 1 in the replication experiment), nor when com-
paring the three low-level features (Wavelet, Gist, and Texture)
with the three high-level models (Functions, Objects, and
Attributes) (176 vs 200ms, t(12), 1 in the main experiment; 155
vs 201ms, t(14), 1 in the replication experiment). However,
when comparing the latency of maximum shared variability with
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the latency of maximum nonshared variability, vERP variability
that was shared with behavior was later on average than non-
shared variability (193ms after image onset vs 144ms,
t(12) = 12.7, p=2.4e-08, d= 4.98 for the main dataset, 158ms vs
138ms, t(14) = 7.4, p=3.28e-6, d= 2.07 for the replication experi-
ment). Therefore, although low-level models explain more and
earlier variability in vERPs overall, they explain less behaviorally
relevant vERP information compared with the high-level fea-
tures, and the time course of behaviorally relevant shared vari-
ability is slower overall than feature processing that is not
associated with behavior.

Finally, we followed the same procedure for each of the five
task-specific experiments. The aggregate results are shown in
Figure 13. We found that there was no significant difference in
maximum shared variability across the five experiments
(F(4,48) = 2.18, p= 0.09) but found a marginal effect in the

replication experiment (F(4,56) = 2.81, p=0.03, h 2 = 0.84).
However, we observed a significant effect of Feature
(F(8,96) = 21.67, p= 1.78e-18, h

2 = 0.99 in the main experiment,
and F(8,112) = 13.3, p=2.1e-13, h 2 = 0.99 in the replication
experiment). Following up on this result, we found that high-
level features shared significantly more behaviorally relevant var-
iance with vERPs than low-level features (0.0007 vs 0.0003,
t(12) = 5.08, p=0.00014, d=1.67 in the main experiment and
0.0008 vs 0.0003, t(14) = 7.49, p=1.46e-6, d=2.04 in the replica-
tion study). Finally, we observed a significant interaction between
Feature and Experiment: F(32,384) = 7.92, p= 1.52e-26, h

2 = 0.98
in the main experiment and F(32,488) = 11.11, p= 1.8e-39, h

2 =
0.99 in the replication experiment). Interestingly, this was
driven by the fact that the orientation experiment had higher
shared variability with low-level features compared with high-
level (t(12) = 3.21, p= 0.003, d= 1.37 in the main experiment and
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Figure 12. Shared explained variance between each of the nine feature models and the RDM for unconstrained scene similarity judgments over time.

Greene and Hansen · Disentangling the Independent Contributions J. Neurosci., July 1, 2020 • 40(27):5283–5299 • 5295



t(14) = 2.67, p= 0.009, d= 0.83 in the replication study), while
the opposite pattern was found for the four other experiments.
Therefore, although high-level features seem to be more behav-
iorally relevant overall, this can change when the task demands
that observers attend to low-level scene properties. We
observed no significant effects of Experiment (F(4,48), 1 and
F(4,56), 1) or Feature (F(8,96), 1 and F(8,112), 1) on the la-
tency of maximum shared variance, nor a significant interac-
tion between these two factors (F(32,384), 1 and F(32,448), 1).

Thus, compared with the unconstrained similarity experi-
ment, we can see that changing the behavioral task changes the
amount of shared vERP variability with features that are associ-
ated with the task. Specifically, although the wavelet features
share little behaviorally relevant vERP variability in most experi-
ments, this was not the case for the orientation task where these
low-level features were task-relevant. Similarly, the lexical fea-
tures shared more behaviorally relevant vERP variability in the
lexical experiment compared with the others.

Discussion
Visual categorization is rapid and seemingly effortless. However,
the initial visual input must be transformed into alternative rep-
resentations that allow categories to be easily distinguished from
one another (DiCarlo and Cox, 2007). Here, we sought to under-
stand the visual processing stages required to transform the reti-
nal image into a semantically rich categorical representation. We
first verified the utility of a variety of popular visual and concep-
tual feature models for scene categorization (see Feature use in
scene categorization behavior). Using time-resolved decoding,
we assessed the amount of category-related information available
in vERPs (see Time-resolved decoding). We then applied a whit-
ening transformation to the feature models and assessed their
utility for explaining vERPs (see Time-resolved encoding).
Critically, we then assessed the shared variability between fea-
tures and behavior for explaining vERPs (see Linking encoding
and behavior). By combining encoding, decoding, and behav-
ioral assessments, we can link neural activity to feature spaces
(encoding), as well to the time course of category information
(decoding), and to the internal representations that guide scene
categorization behavior.

Our decoding results revealed that decodable scene category
information peaked between 150 and 200ms after image onset
and persisted across the trial epoch. These values are consistent
with previous M/EEG studies of object and scene categorization
(Carlson et al., 2013; Clarke et al., 2013; Cichy et al., 2014;
Ramkumar et al., 2016; Bankson et al., 2018). While earlier
decoding has been reported for image exemplars (;100ms)
(Carlson et al., 2013; Cichy et al., 2014), it has remained unclear
whether this performance reflects image identity per se, or the
lower-level visual features that are associated with that exemplar.

In contrast to previous work, we have tested an extensive set
of features ranging from low-level filter outputs to high-level
conceptual features that require extensive human annotation.
Each of the nine features used here has been implicated in scene
categorization. Nearly all have been shown to be computationally
sufficient for categorization, and many have striking correlations
with brain activity and behavior. However, because these models
are often studied in isolation; and because they are correlated
with one another, it has been difficult to assess the independent
contributions of each. Here, we used a whitening transformation
to the input feature RDMs to decorrelate the feature spaces.
Although there is increasing understanding of the need to parti-
tion explained variability for correlated inputs (Lescroart et al.,
2015; Greene et al., 2016; Bankson et al., 2018; Groen et al.,
2018), it is difficult to do this for a large number of input models.
We side-stepped these issues by whitening the features before fit-
ting models. There are many whitening transforms, and we
chose the ZCA algorithm because it has been shown to provide
outputs that are best correlated with the original inputs (Kessy et
al., 2017). While this generally held true for the nine models used
here, it should be noted that the gist features (Oliva and
Torralba, 2001) were an exception (see Fig. 1). Therefore, we
have refrained from strongly interpreting results for that model,
particularly the observation that this feature was not significantly
predictive of the behavioral RDM (Table 1) given previous
reports that gist features can strongly influence categorization
behavior (Greene and Oliva, 2009), vERPs (Hansen et al., 2018),
MEG patterns (Ramkumar et al., 2016), and fMRI activation pat-
terns (Watson et al., 2014).

The current results demonstrate that low-level visual features
explained the earliest variability in vERPs (;90ms after image
onset). High-level visual features had the highest explained vari-
ability 80ms later (;170ms), similar to the time course of
predicting vERPs with the unconstrained behavioral data
(;175ms), or the aggregate of all five scene similarity tasks
(Figs. 10, 11). Further, the average peak decoding accuracy was
observed ;200ms, and peak shared variability for each feature
with behavior also ranged between;170 and 230ms after image
onset. Together, this suggests a progression to categorization that
proceeds from low-level to high-level features.

The observed time course of semantic processing may seem
faster than previously characterized ERPs, such as the N400
(Kutas and Federmeier, 2000). Indeed, violations of scene-object
context have been observed in the 250-350ms postimage win-
dow (Mudrik et al., 2014), as well as in the classical N400 win-
dow (Ganis and Kutas, 2003; Võ and Wolfe, 2013). However,
recent decoding results have shown that these two windows con-
tain similar image information (Draschkow et al., 2018) and may
be reflecting similar neural processes. It is worth noting that the
time course of these ERPs reflects an upper bound to the time
course of semantic processing, and that the current encoding
and decoding techniques may reveal the processes themselves
while the ERPs reflect the outcomes. However, many leading the-
ories of the N400 characterize it as a full contextual evaluation of
the stimulus (Kutas and Federmeier, 2000), and this may require
a full categorical representation before this evaluation can take
place. Consistent with this idea is our observation that behavior-
ally relevant vERP variance was shared after the decoding peak,
particularly for high-level features (see Figs. 6–8, 12), suggesting
that they contributed both to category representations and post-
categorization processing.

When considering all nine models together, the explained
variability for vERPs was largely within the noise ceiling of the

Table 5. Statistics of shared variability between features, unconstrained
behavior, and the nine feature models

Model Maximum R2 Latency of maximum (ms)

Wavelet 0.00024 178
Gist 0.00017 176
Texture 0.00024 175
Conv2 0.00008 168
FC6 0.00494 226
Functions 0.00167 184
Objects 0.00070 235
Attributes 0.00317 179
Lexical 0.00041 216
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data, indicating that these models’ predictive power has been
maximized, given the noise in the data. We observed two distinct
R2 peaks: one at ;100ms after image onset and the other at
;75ms later (see Fig. 6). While low-level features contributed to
both peaks (see Fig. 7), most of the contribution from the high-
level models was during this later period (Table 4). These results
are consistent with other reports of low-level feature encoding
(Hansen et al., 2011, 2012; Groen et al., 2012). Critically, it is
only this later peak that is correlated with scene categorization
behavior (see Fig. 12). Therefore, although low-level features are
critical for subsequent categorization, they do not themselves
enable categorization, counter to views of scene categorization
being largely associated with low-level features (Torralba and
Oliva, 2003; Kaping et al., 2007; Scholte et al., 2009).

Our results are congruent with previous ERP studies that
have shown that evoked responses earlier than ;150ms after
stimulus onset are not correlated with behavioral measurements
(VanRullen and Thorpe, 2001; Johnson and Olshausen, 2003;
Philiastides and Sajda, 2006). However, our results extend those
previous findings by allowing us to make inferences about the
visual and conceptual features that are associated with those
behaviorally relevant neural signals. Specifically, our results indi-
cate that high-level features share more with scene similarity
responses than do low-level features. Specifically, the higher-level

features from the dCNN (FC6) and the attribute model shared
the most variability with vERPs and unconstrained similarity
assessment. Deep CNN models are optimized for categorization,
and the representations in their upper layers reflect this fact. The
attribute model, as discussed in Feature use in scene categoriza-
tion behavior, is a heterogeneous model reflecting human anno-
tations of affordances, surfaces, materials, and spatial properties.
Thus, the whitened attribute model likely reflects aspects of tex-
ture, objects, and affordances that are not captured in those indi-
vidual models.

While much of the scene understanding literature focuses on
scene categorization as an “end point” of the visual recognition
process, it is important to recognize that perception is an
ongoing process without a strict end (Malcolm et al., 2016;
Groen et al., 2017). However, categories are highly linked to
other behavioral tasks, including object detection (Davenport
and Potter, 2004), visual search (Torralba et al., 2006), and navi-
gation (Bonner and Epstein, 2018). Therefore, we have used two
types of behavioral tasks: an unconstrained scene similarity
assessment task that has previously been shown to reveal hier-
archical category representations (Zheng et al., 2019), and a set
of five tasks that ask observers to assess scene similarity with
respect to one of five features that were designed to have observ-
ers attend to low- (orientation), mid- (texture), and high-level
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Figure 13. Shared variability of each feature (columns) with vERPs across each of the five task-driven experiments (rows).
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features (objects, functions, and lexical). We have shown that
changing the task changes the shared variability between vERPs
and features (see Fig. 13). Specifically, although some features
share little variability with the scene categorization, they seem to
be used when the task demands it. This is striking because the
participants in the behavioral experiments were independent of
those in the EEG experiment. We are currently extending this
paradigm to change the observers’ task during EEG recording
(Hansen and Greene, 2019).

By using a combination of encoding and decoding approaches
on high-density EEG data, we have shown that the visual processes
leading up to scene categorization follow a progression from low-
to high-level feature processing from occipital through ventral and
medial temporal cortices in the first 200ms after scene onset.
While low-level features explain more vERP variability overall,
they tend not to share variability with behavioral tasks, except for
when those features are task-relevant. Together, these results call
into question models of scene categorization that are based solely
on low-level features, and further highlight the flexible nature of
the categorization process.
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