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Abstract

Visual scenes, like other natural kinds, have a rich category structure. How do observers
use this structure to aid perception? In this chapter, I will examine the link between
scene category labels and perceptual processes. Scenes in the same category tend
to share a number of features that can help the observer classify the scene. However,
this process is bi-directional: given a scene label, observers are better able to classify
visual content. Altogether, these results illustrate that visual perception and semantic
knowledge are intimately connected, and that shared information between the two
help disambiguate the complexities of the visual world.
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1. Introduction

Imagine that your friend is looking at a photograph on her phone.

Curious, you ask what she is looking at, and she answers that it is a picture

of a street she used to live on. Without knowing anything about the picture,

you already know a good deal of things about the image: you know that it is

an outdoor and urban space, for example. You can also make educated

guesses about the presence of objects such as cars, trees, and houses. You

can rule out a number of other objects such as sharks, black holes, or air-

planes. If you have a little bit more information, such that your friend used

to live in Boston, you know even more about the picture. You can make

inferences about the width of the street, as well as the height, density,

and architectural style of the buildings.

The reduced uncertainty that you have about the picture after being

given the label “street” is the information that the label provides. Although

information was a long-standing qualitative concept, Shannon formalized

the concept in the 1940s, allowing information to be treated like any other

physical entity such as mass or temperature (Shannon, 1948). Concurrently,

psychology was moving away from behaviorism and toward modeling the

mind as an information processor, and Shannon’s ideas were immediately

influential (Attneave, 1954; Miller, 1953). Specifically, it was understood

that both visual images and natural language were redundant. If the brain

capitalized on this redundancy, then it could form more economical, com-

pressed representations that could explain our cognitive facility in the face of

a complexworld. These ideas then spread to the neuroscience community in

the form of the efficient coding hypothesis (Barlow, 1961).

The goal of this chapter is to illustrate the bi-directional information flow

between category labels and the visual perception of real-world scenes. As

categories make the explicit link between vision and semantics, I will begin

with some basic definitions of categories and category membership. I will

then turn to the question of scene categories, and describe work that answers

some basic questions such as the number of categories and their entry-level

status in a data-driven manner. In the next section of the chapter, I will

examine how visual features give rise to scene categories, and the extent

of the utility of a range of features from low-level features such as color

and contour to high-level features such as objects and affordances for pro-

viding information about category status. The regularities at these levels

allow the formation of priority maps, allowing scenes to be rapidly
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categorized via diagnostic features. However, a scene category is more than

merely a set of features: category labels come bundled with expectations of

objects, locations, and events. In other words, we form schemata of catego-

ries that enable intelligent guidance of behavior. In the next section of the

chapter, I will review work that shows how the information available in a

category label alters even early visual representations. Taken together, these

results provide evidence for a view of visual cognition that is deeply embed-

ded in semantic knowledge, and making use of that knowledge to disambig-

uate the complexities of the visual world.

2. What is a category?

In a world without categories, we would have to rediscover every

concept upon each use. For example, without the concept of cup, we would

have to rediscover the function of this object each time we were thirsty and

wanted some water. By forming mental representations of entities that can

be treated equivalently, we enable ourselves to make predictions and infer-

ences about the world. A concept is the mental representation itself, and a cat-

egory refers to the set of items within the representation. Concepts link our

past experiences to the current state of the world, and thus are said to “glue

our mental world together” (Murphy, 2004). Concepts also play a pivotal

role in perception: to say that we recognize something (say a cat) is to cat-

egorize that object as being a member of the cat category. In this way, all

perception is an act of categorization (Bruner, 1957). In addition to linking

perception, memory, and inference, categories also interface with language

as these labels allow for information exchange between people. By sharing

conceptual representations, we can communicate our knowledge about the

objects, environments, and people around us.

It is generally thought we use categories in a way that maximizes infor-

mation transmission between individuals. Category concepts exist in hierar-

chies: my chair could be more broadly described as furniture, or more

specifically described as a straight-backed wooden chair. Why do I choose to

describe it with the middle level of specificity? Although more specific cat-

egories provide more information overall, knowing that my chair is a

straight-backed wooden chair as opposed to a metal folding chair will not

fundamentally change how interact with and use the chair. However,

knowing that an article of furniture is a chair and not a table will change

how I interact with the object.
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In general, we discuss most categories at this mid-level of specificity and

are faster and more accurate to respond to labels at this level compared to

more general (known as superordinate) or more specific (known as subor-

dinate) levels (Brown, 1958; Murphy & Brownell, 1985; Rosch, Mervis,

Gray, Johnson, & Boyes-Braem, 1976; Tversky & Hemenway, 1983). This

middle level of specificity is known as the basic level (or entry level) of a

category (Rosch et al., 1976). Although robust, the basic level preference

is not absolute: a conversation between two experts may have more specific

labels (Tanaka & Taylor, 1991), and very atypical items within a category

tend to be labeled more specifically as well ( Jolicoeur, Gluck, & Kosslyn,

1984). For example, we tend to label an ostrich at the subordinate level, even

though it is a lawful member of the bird category.

There are several theoretical accounts for why the basic level preference

exists, and each posits that the basic level maximizes the information

between interlocutors. Models of category utility (Corter & Gluck, 1992;

Jones, 1983) posit that basic level categories maximize the similarity within

a category while minimizing the similarity between categories. This would

allow interlocutors to have an optimal trade-off between specificity and gen-

eralization. By contrast, the basic level categories may provide maximum

information compression by minimizing the description length of category

labels (Pothos & Chater, 2002). Lastly, the basic level could maximize infor-

mation transmission by reducing the number of diagnostic features to test,

while placing weight on features that are easy to compute (Gosselin &

Schyns, 2001).

2.1 What is a scene category?
In this chapter, we will concern ourselves with categories of environmental

scenes. The last 20 years has seen an increase in the use of natural scene

images as stimuli for experiments in visual perception. Although natural

scenes present additional experimental challenges over more simple stimuli

such as gratings (Rust & Movshon, 2005), there are both theoretical and

practical reasons to move in this direction. Despite the complexities of

real-world scenes, all natural scenes share statistical similarities (Simoncelli

& Olshausen, 2001) that seem to reflect the response properties of the visual

system (Field, 1987; Simoncelli & Olshausen, 2001). This highlights the fact

that our evolutionary history honed the visual system to perceive natural

scenes rather than gratings. Indeed, a hallmark of human scene processing

is its speed: in a single fixation on a novel scene, one is able to apprehend
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its basic semantic information, or gist (Potter, 1975), describe a few large

objects (Fei-Fei, Iyer, Koch, & Perona, 2007), understand its spatial layout

(Greene & Oliva, 2009a), and even be able to form esthetic judgments

(Zajonc, 1980). Thus, the study of natural scenes makes links to other critical

aspects of cognition such as attention (such as when I search for my

frequently lost keys), navigation, and memory.

Environmental scenes appear to be a natural kind for the human mind:

they are perceived with equal facility as objects (Potter, 2012), we remember

themwith similar fidelity (Konkle, Brady, Alvarez, &Oliva, 2010a), and like

other critical categories such as objects as faces, distinct areas of the visual

cortex are devoted to processing scenes (Epstein & Kanwisher, 1998). Like

objects, scenes have a hierarchical category structure with a basic level pref-

erence (Tversky &Hemenway, 1983). In that study, the authors developed a

small taxonomy of eight scene categories (four indoor and four outdoor) by

asking experimental participants to generate lists of environments. From

these lists, they created a three-level hierarchy of these environments. For

example, the most general (superordinate) level was indoor and outdoor.

In the next level of the hierarchy, there were stores, schools, restaurants,

and homes as types of indoor places. In the most specific level of the hier-

archy, they distinguished, for example, department stores and grocery stores

as different types of stores. They found that scene categories demonstrated

many of the same basic-level effects as object categories: participants were

able to list many more attributes and activities with the mid-level tier of their

taxonomy than the other levels, and this level was the most frequently

named by observers.

Despite the foundational nature of this study, many questions persisted

for decades following. For example, how many categories of environmental

scenes exist? In the late 1980s, Biederman estimated that there are 30,000

basic level object categories (Biederman, 1987). This estimate was reached

by sampling pages of a dictionary and counting the number of words that

defined a basic level object category. Using a similar method, Xiao and col-

leagues estimated just over 900 scene categories to create the Scene UNder-

standing (SUN) database (Xiao, Ehinger, Hays, Torralba, & Oliva, 2016).

However, these authors never claimed that these were basic level scene cat-

egories, and instead aimed at completeness across the space of environmental

categories. Therefore, one may question whether “front seat” versus “rear

seat” of car interiors or “cascade waterfall” versus “cataract waterfall” make

for different basic level categories of scenes. In the SUN database, only

around 400 categories were “well sampled,” which was defined by the
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authors as having >100 unique photograph exemplars available for down-

load on the web. In other words, more than half of the categories in the SUN

database were relatively rare. Furthermore, in a footnote, the authors note

that in a group of seven researchers who sampled 284h of lived experience,

there were only found 52 unique categories of environments that were

experienced. Later work aimed at gathering a larger number of sample

images per category only found 205 scene categories with at least 5000

unique image examples (Zhou, Lapedriza, Khosla, Oliva, & Torralba,

2018). Taken together, this could suggest that a good number of the 900+

categories in the SUN database are more specific than entry-level scene

categories.

2.2 How many basic level scene categories exist?
Scene categories make an explicit link between visual perception and

semantics. We can estimate the richness of this semantic space by estimating

the number of scene categories that exist. Moreover, knowing the total

number of scene categories can constrain our search for the possible mech-

anisms of scene categorization. For example, a coding strategy that works

well for tens of categories might not scale well to tens of thousands. In order

to estimate the number of environmental categories broadly, and the num-

ber of basic level categories in particular, I adopted a data-driven approach.

In order to get a total count of categories that reflected usage in the vision

literature, I first determined all of the scene categories that had been reported

in the scene categorization literature. I identified a set of 116 studies in cog-

nitive psychology, cognitive neuroscience, and computer vision, published

between 1979 and 2011 that published their category lists. From these,

I collated a total of 1532 unique scene categories. Upon examining the spe-

cific categories, I observed that 42 of the categories were proper nouns, such

as “Arizona” or “Yellowstone.” Additionally, 44 categories described ani-

mate entities, rather than environments, such as “crowd of people” or

“eagle.” A total of 35 categories described events rather than places, such

as “aviation” or “climbing.” Furthermore, 93 categories described entities

that were more object-like than scene-like, such as “doors” or “flags.”

204 categories described rare entities for which fewer than 100 images could

be found. Finally, 59 categories were found to have significant overlap (e.g.,

“natural lake” versus “lake”). After pruning these categories, 1055 scene cat-

egories remained.
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One way to estimate the number of scene categories in the world is to

examine the number of scene categories used in scene categorization

research. As shown in Fig. 1A, scene categorization has become an increas-

ingly popular topic over time (shown by the higher density of points on the

right-hand side of the graph) and the number of scene categories examined

per study has also steadily increased over the last 40 years. In the 1980s and

1990s, fewer than one scene categorization study per year was published on

average, but this has increased to an average of nine per year in the 2000s and

2010s. Similarly, studies in the earlier decades used around half a dozen scene

categories per study, but this has increased to over 100 in the 2010s. How-

ever, the prevalence of any particular category is very rare: while each of the

1055 categories was observed in between 1 and 60 published studies, the

median number of published studies was 2. Fig. 1B shows the category fre-

quency as a function of frequency rank (log-log plot). The linear relationship

here is evocative of Zipf’s law for word frequencies, in which a small number

of words are very frequent, with a long tail of low-frequency words.

Although we do not yet have a full understanding for why word frequencies

are distributed in this way, one intriguing possibility is that they reflect orga-

nizational processes in human memory (Piantadosi, 2014).

In order to determine howmany of the 1055 categories reflect basic level

scene categories, I conducted a large-scale study with 2295 online partici-

pants using a platform called Mechanical Turk (mTurk), powered by

Fig. 1 (A) Distribution of the number of categories used in 116 studies of scene cate-
gorization between 1979 and 2011. (B) The frequency of category usage across studies
follows a Zipf’s law.
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Amazon. In the Mechanical Turk marketplace, observers can perform small

tasks for small amounts of money. Most tasks on this site are easy for a

human, but hard for artificial intelligence (AI), and are typically used to train

large-scale AI systems. In recent years, experimenters in the cognitive sci-

ences have used the platform to upload experimental tasks and to collect data

on a scale that is not possible at a single college or university (Buhrmester,

Kwang, & Gosling, 2011). In this experiment, participants completed mini-

experiments (called “hits”) that each consisted of 10 trials. In each trial,

participants were shown two images side by side. In half of the trials, the

images were drawn from the same putative category (from the set of

1055), and for the other half, they were drawn from two randomly selected

categories. The participants were asked to introspect about what words they

would use to describe each of the scenes if they were using them to finish a

sentence such as “I am going to the….” They were then instructed to click

“yes” if they would use the same word for both images, and to click “no” if

they would use two different words. As this type of sentence evokes the basic

level scene category, this task allows us to determine how observers place

scenes into entry-level categories, and to assess how many entry-level

categories there are. In addition to the main yes/no task, the participants

were instructed to type in the category name that they would use for the

left image. Therefore, for each putative category, we have the extent to

which observers agreed on category membership, and a distribution of terms

used to describe the category.

A subset of these data were previously reported by my team (Greene,

Baldassano, Esteva, Beck, & Fei-Fei, 2016). My colleagues and I collected

a total of over 5million pairwise responses from themTurk participants. The

resulting 1055!1055 matrix of responses is shown in Fig. 2A. In this figure,

the categories have been ordered using the optimal leaf order algorithm

(Bar-Joseph, Gifford, & Jaakkola, 2001) in order to showmaximal structure.

In this figure, areas that are lighter show category pairs that observers

consistently placed in different categories, while darker areas show category

pairs that were frequently placed into the same category. If all of the 1055

categories represented perfect basic level categories, then one would expect

a single dark stripe down the diagonal of the matrix, with light colors

elsewhere. The existence of non-diagonal structure indicates that many of

the categories in the 1055 are subordinate level as they are frequently put

into the same entry-level category by observers.

Fig. 2B shows the proportion of “yes” responses for each of the diagonal

entries of the matrix. These represent cases in which both scenes were drawn
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from the same putative category. On average, observers agreed that two

images from the same putative category were from the same basic level

69% of the time (interquartile range: 59–81%). Lowest agreement was found

for “outdoor” (8%), “community center” (16%), “indoor” (17%), “research

center” (18%), “dressing room” (20%), and “student center” (23%). As out-

door scenes can encompass both urban and natural landscape environments,

it makes sense that agreement is lower than for indoor scenes, even though

these both reflect more general (superordinate) categories. The other low-

agreement categories likely reflect a larger visual diversity than most. For

example, a “research center” could resemble either an office or a laboratory

environment. On the other end of the scale, “train platform” (96%), “car

interior” (94%), “highway” (94%), and several sub-categories of waterfalls

all had high agreement of category membership.

Is there something in the “wisdom of the crowd” of vision researchers

that has honed in on “good” scene categories? I observed a modest corre-

lation between the agreement of category membership from the mTurk

experiment and the popularity of the given category from the literature

review (r¼0.17, P<0.0001), suggesting that categories that are more fre-

quently chosen by scientists are the categories that observers tend to have

Fig. 2 (A) Matrix of “Same Category” responses between each pair of 1055 scene cat-
egories. (B) Histogram of “Same Category” responses along the matrix diagonal.
(C) A small positive correlation between the popularity of a category in the literature
and the proportion of “Same Category” responses. (D) Negative correlation between
the proportion of “Same Category” responses and the number of unique terms gener-
ated for the category.
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more agreement about as well (Fig. 2C). Finally, it appears that there is a

substantial link between the goodness of the scene category and the reliabil-

ity of the terms that the observers used to describe them: I observed a sub-

stantial negative correlation (r¼#0.53, P<0.0001) between observer

agreement and number of unique terms describing each putative category,

indicating that the more unique terms observers had for a putative category,

the less likely they were to place images from this putative category into the

same entry level (see Fig. 2D).

It is important to note that the categories with high observer agreement

are not necessarily the basic level scene categories. Basic level categories are

identified through both high within-category similarity as well as low

between-category similarity (Iordan, Greene, Beck, & Fei-Fei, 2015;

Jones, 1983; Rosch et al., 1976) and the current measurement only captures

the former. If a category is entry-level, then observers should agree that dif-

ferent exemplars are members (within-similarity), and they should also reject

exemplars from other categories as members (between-dissimilarity). On the

other hand, if two putative categories have high between-category similarity

as well as high within-category similarity, this is evidence that these should

be merged into one basic-level that will maintain both the cohesion within

the category as well as the distinctiveness from other categories. Overall,

36% of the 1055 categories (N¼384) had a within-category similarity of

over 75%. From these, I clustered categories together when the between-

category similarity was >50%, and then I assigned the most common name

provided by the mTurk participants as the basic level category name. This

process yielded 211 basic level category names. Of these, 58% (N¼122)

were represented in the Places-365 database (Zhou et al., 2018), and 66%

(N¼241) of categories in the Places-365 database were not represented

in this list, see Fig. 3. In other words, of the 455 unique categories represen-

ted in this database and the Places-365 database, only 122 were represented

in both.

Now that we have established a set of scene categories for which

observers have high agreement about basic level membership, it is time to

link these categories with their visual features. Rosch and colleagues noted

that the basic level is the most general category label for which objects have a

similar shape (Rosch et al., 1976). Here, I extend this analogy to scenes by

allowing the average image to show the average layout, or scene shape

(Torralba &Oliva, 2003). Averaged images (N$5000 images) for 20 exam-

ple categories are shown in Fig. 4. The extent to which recognizable struc-

ture may be seen in these images illustrates the extent to which there is
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Fig. 3 Euler diagram of identified basic level scene categories (blue) and representation
in the Places-365 database (red).

Fig. 4 Averaged images of 20 basic-level scene categories. Each image is the average of
at least 5000 exemplars taken from the Places-365 database.



self-similar information across images. In other words, it qualitatively shows

how much visual information is contained in the category labels. For exam-

ple, the average “phone booth” shows a red, rectangular structure in the

center of the image, and pointed building structure can be seen in the aver-

age “temple” image as well. Similarly, “fields” and “badlands” can be char-

acterized by their open structure and clear line to the horizon. Other

categories, such as “discotheque” and “glacier” lack diagnostic structure

but seem to have diagnostic colors. Finally, a few categories such as

“kitchens” have few distinguishing features in the average at all.

2.3 Section summary
The goal of this chapter section is to show the comparative richness of the

human conceptual structure for environmental scenes. Establishing the

number of entry level scene categories is necessary for understanding how

visual perception links to semantics: categories allow us to abstract over

superficial differences between exemplars, and thus leverages our ability

to communicate, remember, and make inferences on the basis of visual

experiences. By knowing the number of categories we have, we know

the relative richness of this cognitive space. I am not aiming to exhaustively

enumerate all basic level scene categories. Given that membership in an

entry level category depends on outside knowledge and context

( Jolicoeur et al., 1984), this would be impossible. Instead, my goal is to pro-

vide an estimate both of the total number of unique environments a typical

Westerner would typically name, as well and the proportion of these that are

at the entry level. These results suggest that although we may distinguish

around 1000 distinct types of environments, and that there may be fewer

types of environments than types of objects (Biederman, 1987). As most

scenes contain around a dozen objects (Greene, 2013), this makes sense.

Moreover, the number of categories that have basic level status is an order

of magnitude smaller than this. This suggests that for efficient

communication—only a relatively small subset of categories is needed and

that category labels themselves give considerable amounts of information

compression.

3. What makes a scene a member of its category?

It is becoming increasingly accepted that scene understanding is

achieved through an interplay of bottom-up perceptual analysis and top-

down predictive guidance (Hochstein & Ahissar, 2002). In this view,
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bottom-up perceptual analysis would identify diagnostic features of a given

scene category, and top-down predictive guidance would select additional

features for subsequent analysis and disambiguation. For example, if prelim-

inary analysis yielded a scene representation that provided equal evidence for

beach and field categories, then top-down guidance could select additional

features for processing that would distinguish between these possibilities,

or weight one of the possibilities based on the prior probability of seeing

either a beach or a field in the current context. What are the features that

are most diagnostic of scene categories? How much low- and mid-level

visual processing does this visual system have to complete before the infor-

mation from a scene representation contains diagnostic information? Here,

I will review evidence for low-, mid-, and high-level features. In each case,

I will discuss the sufficiency of each feature for categorization, and any evi-

dence that each influences behavioral categorization judgments or neural

responses in scene-selective cortex.

3.1 Low-level visual features
Following Malcolm, Groen, and Baker (2016), I will define low-level visual

features to be those that can be computed directly from an image by filtering

for features such as color, orientation, and spatial frequency. As shown in

Fig. 4, color is a feature that is diagnostic of some scene categories. Color

and texture features have been shown to be effective in city versus landscape

scene classification (Vailaya, Jain, & Zhang, 1998), but these features seem to

be of limited use for distinguishing among 397 scene categories in the SUN

database (4.2% correct, chance¼0.25%) (Xiao et al., 2016). The extent to

which human observers use color in scene categorization has yielded mixed

results. In general, color may be effective for natural landscape scenes for

which color is diagnostic (e.g., forests are green, and oceans are blue)

(Goffaux et al., 2005; Oliva & Schyns, 2000), and color seems to be used

when categorization is made more difficult, for example, in the presence

of blurring (Castelhano & Henderson, 2008). But in general, the utility

of color for both human observers and computational models seems rela-

tively modest (Vogel, Schwaninger, Wallraven, & B€ulthoff, 2007).
The distribution of edges and junctions is another low-level visual fea-

ture whose efficacy for scene categorization has been tested in both human

observers and computational models. Computer vision features that encode

distributions of oriented edges (e.g., Dalal & Triggs, 2005; Lowe, 1999)

achieve between 10% and 26.3% accuracy in classifying the 397 categories
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of the SUN database (Xiao et al., 2016). Local edge contrast is also a helpful

feature for human observers. Line drawing renderings of photographs acti-

vate scene-selective brain areas in a similar manner as the original photo-

graphs (Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011). Observers are

particularly sensitive to the statistics of contour junctions (Walther &

Shen, 2014), and perturbations to these statistics also drive decoding accu-

racy in scene-selective cortex (Choo & Walther, 2016). Similarly, simple

statistics of local contrast explain a considerable amount of variance in early

event-related potentials (ERPs, Groen, Ghebreab, Prins, Lamme, &

Scholte, 2013; Scholte, Ghebreab, Waldorp, Smeulders, & Lamme, 2009).

3.2 Mid-level visual features
While low-level visual features are those that could conceivably be com-

puted in the lateral geniculate nucleus (LGN) or primary visual cortex

(V1), and high-level visual features contain nameable semantic information,

mid-level visual features bridge this gap, providing information about tex-

tures, surfaces, and some shape features (Groen, Silson, & Baker, 2017).

A classic mid-level visual feature that was one of the first successful fea-

tures for computer scene classification was the spatial envelope, or gist,

descriptor (Oliva & Torralba, 2001). The gist descriptor is a coarsely local-

ized Fourier spectral template that describes the dominant orientations at dif-

ferent spatial frequencies within one of many spatial bins. For example, one

might create a gist descriptor with eight orientations, and four spatial fre-

quency scales, localized in a 4!4 grid (N¼16 bins) across the image, for

a descriptor with 512 dimensions. This type of representation can distinguish

among broad categories of scenes, including natural versus urban, indoor

versus outdoor, open versus enclosed, etc. This representation achieves

16.3% correct classification on the 397 categories of the SUN-397 database

(Xiao et al., 2016). Moreover, scenes that share a similar gist descriptor tend

to have similar patterns of response in fMRI throughout visual cortex

(Watson, Hartley, & Andrews, 2014), and in particular within the scene-

selective parahippocampal place area (PPA, Watson, Andrews, &

Hartley, 2017).

Although scenes are not themselves textures, many types of scenes have

diagnostic texture features. Texture features have been shown to achieve a

21.6% accuracy in classifying the SUN-397 database (Xiao et al., 2016).

Some scene categories (particularly natural landscapes) can be recognized

by human observers from their texture statistics alone (Loschky, Hansen,

Sethi, & Pydimarri, 2010). Moreover, a representation based on texture
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statistics can explain many of the errors made by observers during brief scene

presentations (Renninger & Malik, 2004), as well as aspects of peripheral

vision (Ehinger & Rosenholtz, 2016).

Another mid-level visual feature that has garnered attention is the statis-

tical ensemble, or summary representation. An ensemble representation

explicitly codes for first-order summary statistics of the visual input (mean,

variance, etc.), rather than encoding all individual display items. As visual

scenes contain a great deal of redundant structure, this is an efficient repre-

sentation. In both laboratory displays and natural scenes, observers are

remarkably adept at estimating the mean size or center of mass of a group

of objects, or even the average emotion in a crowd of faces (reviewed in

Alvarez, 2011; Whitney & Leib, 2018). In a fully labeled database of

3500 scenes, I previously found that a classifier using summary statistics from

the object labels (mean object size, number of objects, center of mass, etc.)

could accurately classify scenes at both the superordinate (AUC¼0.83)

and basic levels (AUC¼0.77) (Greene, 2013). More importantly, the

pattern of errors made by this classifier resembled the superordinate-level

patterns of errors made by human observers in brief presentations (Kadar &

Ben-Shahar, 2012).

Although the object-selective lateral occipital complex (LOC) is not sen-

sitive to changes in ensemble statistics, regions of the parahippocampal gyrus

are (Cant & Xu, 2012). As the parahippocampal gyrus is also highly involved

in scene processing, this result is suggestive of a substantial role of ensemble

processing in scene understanding. Similarly, early brain responses seem to

distinguish images that differ in ensemble/texture statistics for both textures

(Groen, Ghebreab, Lamme, & Scholte, 2012) and natural scenes (Groen

et al., 2013).

3.3 High-level visual features
High-level features are semantically identifiable features that not easily com-

puted directly from the images, and often require human observers to be “in

the loop” for annotation. These can include the list of objects with the

images (Greene, 2013), hand-labeled attributes of images (Patterson, Xu,

Su, & Hays, 2014), and the set of human actions that could be undertaken

within scene environments (Greene et al., 2016). Because these features

themselves contain semantic content, they make the most direct link

between scene category semantics and visual processing. However, it is pos-

sible but not yet clear whether these high-level features are exclusively

visual, nor whether they are processed in a purely bottom-up manner.
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3.3.1 Objects
A “bag of words”model is a model that predicts a scene as being a member of

a particular category when given the list of the scene’s objects as input. For

example, given the objects “waves,” “sand,” and “sky,” a bag of words

model might predict beach. Such models were very popular in computer

vision in the 2000s (Bosch, Zisserman, & Muñoz, 2006; Fei-Fei &

Perona, 2005). Previously, I found that in a cleanly labeled scene database,

a bag of words representation could effectively classify scenes at the basic

level (AUC¼0.96), but that the pattern of confusion for this representation

was unlike that of human observers during brief scene presentations

(Greene, 2013). Part of the disconnect is that the bag of words approach

seems cognitively and physiologically implausible: this model assumes that

all object processing is complete before scene classification takes place.

Given that the classification of a whole scene does not appear to take more

cognitive resources than classifying a single object (Potter, 2012), and visual

working memory of individual objects is limited (Liu & Jiang, 2005), it is

unlikely that human observers use this approach to categorize scenes.

In the basic bag of words scenario, the model is given the presence or

absence of all possible objects. To simulate a more realistic scenario,

I examined the minimum number of objects necessary to achieve this level

of performance. Following Biederman (1981), one could classify a scene

from a single object (or group of objects) if they are completely diagnostic

of a scene category. For example, because a toilet only occurs in a bathroom

scene, if one recognizes a toilet, then the scene can be correctly classified

even if no additional analysis takes place. However, without knowing the

type of scene one would see in advance, we still need to examine the pres-

ence and absence of a number of objects because the diagnostic objects are

not known in advance. To model the “best” objects, I computed the mutual

information between each object and each scene category:

I Objects; Scenesð Þ¼H Objectsð Þ#H ObjectsjScenesð Þ

where

H Objectsð Þ¼#
Xn

i¼1

p Objectið Þlog2p Objectið Þ

and

H ObjectsjScenesð Þ¼#
X

o2Objects, s2Scenes
p Objects, Scenesð Þlog2

p Object, Sceneð Þ
p Objectð Þ
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Over the entire labeled database, sky was the most informative object

(Greene, 2013). Because the presence of sky is diagnostic of outdoor scenes,

both the presence and absence of this object rule out about half of the scene

categories in the database. I examined the extent to which the presence or

absence of the top N informative objects could predict a scene’s basic level

category, and compared this level of performance to the average of

N random objects selected from the database. As shown in Fig. 5A, with

only the 64 most informative objects, one can achieve ceiling-level scene

classification performance (Greene, 2013). Interestingly, the correlation

between the off-diagonal elements in the classifier confusion matrix is also

highly correlated with the confusions made by humans observers (data from

Kadar & Ben-Shahar, 2012), and the strength of this correlation also

increased as the number of informative objects increased, see Fig. 5B.

Therefore, the mistakes made by human observers during rapid visual pre-

sentations seem similar to a classifier given the presence or absence of a few

dozen informative objects.

While the previous analysis suggests that the presence or absence of a set

of well-chosen objects can indeed classify scenes, this model still requires that

observers be able to process dozens of objects before the scene could be rec-

ognized. Without knowing the scene category in advance, even knowing

the most informative object yields only 14% accuracy (chance¼6.25%).

However, this level of accuracy can only be achieved by knowing the most

informative object and knowing where to devote attention in order to pro-

cess it. In this case, this is somewhat easy because sky is found in the upper

visual field (Greene, 2013; Oliva & Torralba, 2007). But some of the objects

that also have high mutual information for scene categories, such as “chair,”

Fig. 5 Left: Scene classification with the N most informative objects (blue) or N random
objects (red). Right: Correlation between informative object classifier’s errors and those
of human observers.
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“tree,” “window,” and “pillow” do not have such advantage. The results

from Fig. 5B therefore present a paradox: how is it that the errors of this

model are so well-correlated with the errors of human observers when this

model’s mechanism is so implausible? This model assumes that scene under-

standing is achieved exclusively through a bottom-up route that analyzes

objects and uses these objects to establish the scene’s category. However,

the high correlation with human observers implies that their representations

effectively contain information about these objects. It is therefore likely that

previous knowledge about object co-occurrence is used to generate this

information in a top-down manner.

If we consider that observers have time to recognize at most one object

during a fixation (Liu & Jiang, 2005), we can consider a few scenarios: (1)

one recognizes the object nearest to the center of the image; (2) one recog-

nizes the largest object; or (3) one recognizes the object with the most visual

saliency. Human observers have a tendency to direct gaze toward the center

of the image (Tatler, 2007), and this can be explained to a large extent by

photographers’ tendency to frame informative aspects of an environment

closer to the center of an image (Tseng, Carmi, Cameron, Munoz, & Itti,

2009). Therefore, if the object in the center of the image is sufficiently

diagnostic of the scene category, then recognizing this centered object could

be a route to scene categorization. I used the center xy point of the polygon

that defines each object in each of the 3499 scenes. I then chose the object

with the lowest Euclidean distance to the center of the image. With this

object, I examined its diagnosticity (p(category jobject)), and assigned the cat-
egory with the highest probability as the predicted category. As shown in

Fig. 6, although this strategy can achieve above-chance categorization

accuracy, its overall rate (25%, chance¼6.25%), is far less than the near-

ceiling rates observed for human observers. To examine the second strategy,

I computed the area subtended by all labeled objects in each scene. Using the

largest object, I classified the scene using maximum diagnosticity as before.

This strategy yielded similar results (32% correct, see Fig. 6). Last,

I examined the extent to which the most visually salient object might be

useful in scene categorization. Using the saliency toolbox of Walther and

Koch (2006), I found the most salient region of each image and mapped

it to its corresponding object. As before I used diagnosticity as a classification

criterion. As with the other two strategies, this procedure yielded marginal

results (27% correct, see Fig. 6). Therefore, although one can classify scenes

from groups of informative objects, it seems unlikely that scenes can be

correctly classified from the perception of a single object.
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Of course, correctly detecting the presence of one object can give the

observer good information about the presence of others. These object

co-occurrence statistics could provide a source of top-down information

for scene categorization. For example, in this labeled database, given the

presence of a stove, there is a 97% chance that there is also a cabinet in the

image (Greene, 2013). In order to model this situation, I re-simulated the

three scenarios described above, but allowed for multiple objects to be

included if their presence was >95% probable given the presence of the

centered, large, or salient object. I found that adding these objects boosted

the classification accuracy of each of these scenarios by<1%, largely because

so few objects had such strong co-occurrence statistics. Of course, 95%

probable is a strict threshold, and it is likely that a more sophisticated

Bayesian analysis would yield better performance.

Recently, Võ and colleagues have coined the term anchor object to refer

to those scene objects that define the shape and space of a scene, and that

determine the placement of other mobile objects around them. For exam-

ple, a stove and a refrigerator are anchor objects in a kitchen, and other objects

such as pots and pans are placed in reference to them. Such anchor objects

seem to guide observers’ construction of scene environments (Draschkow &

Võ, 2017) as well as guide attention during visual search (Boettcher,

Draschkow, Dienhart, & Võ, 2018). I coded each of the 617 unique objects

Fig. 6 Scene classification accuracy based on a single object. From left to right: object
nearest the image center, the largest object, or the most salient object. Error bars
represent '95% confidence intervals.
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in the labeled database as either being “anchor” or “not” and found that

98 of the objects were anchor objects. Using the same method described

above, I examined the extent to which the processing of a single anchor

object could categorize a scene. Interestingly, anchor objects by themselves

provided less diagnostic scene information (21% classification accuracy) than

the centered, salient, or largest objects. Although this seems counter-

intuitive, it is worth noting that the same anchor object is often found in

multiple categories of scenes. For example, a large, centered table can be

an anchor in either a dining room or conference room. Therefore, by itself

it cannot distinguish between the categories. I extended this analysis as

above, including both the anchor object and any additional object that

co-occurs with the anchor object with a probability >95%. However, as

with the large, salient, or centered objects, the addition of these objects

did not appreciably improve the classification performance (22% on aver-

age). Therefore, although anchor objects seem to be effective guide posts

for attention when performing visual search, they provide more information

about object location than category identity.

Altogether, these results illustrate that it is implausible that observers

recognize scenes by recognizing a single object within them. Although a

few dozen intelligently chosen objects can accurately distinguish among scene

categories, the sheer speed of scene categorization argues against the plausibil-

ity of a scene categorization mechanism that serially tests the presence or

absence of dozens of objects.

3.3.2 Attributes
Objects are not the only high-level aspect of visual scene environments. In

order to enumerate and characterize all of the differences between different

scene environments, Patterson et al. (2014) performed a large-scale exper-

iment on mTurk in which they provided two images to observers, and asked

them to list all of the attributes that make the images different. From the raw

responses, they categorized attributes that distinguish scenes into five general

categories: (1) materials; (2) surface properties; (3) affordances; (4) spatial

layout; (5) objects. With a different group of mTurk observers, images in

the SUN database (Xiao et al., 2016) were annotated according to 102 attri-

butes in those categories. The authors found that each of the attributes could

be directly classified from image features, and that scene categorization using

attributes as an intermediate-level feature was slightly more accurate (40.2%

correct, chance¼0.25%) than simply using the features alone (38%). More

impressively, the attribute features predicted more of the off-diagonal
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responses in the human confusions reported by Xiao et al. (2016), suggesting

that these features may have some special significance in explaining human

scene category representations.

3.3.3 Affordances
There is also a strong link between a scene’s category and its affordances—the

set of actions that one could take in the scene environment. Being shown a

scene environment that is congruent with a set of actions (e.g., cooking in a

kitchen) makes one faster to respond to action-related objects in that envi-

ronment (Wokke, Knot, Fouad, & Richard Ridderinkhof, 2016), and faster

to recognize the action being performed by others (Wurm & Schubotz,

2017). Moreover, there is also evidence that our scene category boundaries

are largely defined by affordances (Greene et al., 2016), and that navigational

affordances systematically modulate scene-selective regions of visual cortex

(Bonner & Epstein, 2017).

In order to annotate a complete set of affordances, my colleagues and

I adopted the American Time Use Survey, an annual telephone survey con-

ducted by the United States Bureau of Labor Statistics. In this survey, a rep-

resentative sample of the US population is polled on their activities in the

previous 24h period in 15-min intervals. For this project, we appropriated

the 2014 coding lexicon for these surveys, which was developed, modified,

and validated over a 2-year period of large-scale pilot data collection

(Shelley, 2005). The lexicon is organized hierarchically, with 17 major clas-

ses of activities, 105 mid-level category distinctions, and 428 specific activ-

ities. From the most specific group, we collated categories that would appear

visually identical (e.g., driving to work versus driving to doctor, or tele-

phone calls to family member versus telephone call to salesperson). This left

us with a set of 227 actions. The image set for this experiment was a set of

311 categories with strong within-category cohesion (see Section 2.2). In an

additional mTurk annotation experiment with 484 observers, we showed an

example image from one of the 311 categories along with a random selection

of 18 of the 227 actions. Observers were asked to use checkboxes to indicate

which (if any) of the actions could be done in the scene from the perspective

of the photographer. We collected a total of 1.3 million trials such that each

action-category pair was annotated by at least 10 observers.

Fig. 7 illustrates the affordance space of scene categories, visualized using

t-stochastic nonlinear embedding (t-SNE, van derMaaten &Hinton, 2008).

It is evident that the differences in a scene’s affordances can distinguish a

number of different scene characteristics, including superordinate-level
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category (left), the spatial layout properties, such as whether the scene is an

open or enclosed space (center, Greene & Oliva, 2009b; Oliva & Torralba,

2001), or whether the environment reflects a public or private location (right).

We wanted to see if similarities between categories in this affordance

space predicted the types of category similarities we observed from the

same-different category task on mTurk. To do this, we created a

311!311 category distance matrix in which each cell of the matrix repre-

sented the distance (or inverse similarity) between a pair of scene categories.

We then examined the correlation between this set of distances and the dis-

tances from the mTurk experiment. We found that about 2/3 of the

explainable variation in the human distances could be explained by the dis-

tances in affordances (Greene et al., 2016), and that this explanatory power

was greater than that of a number of other popular low-, mid-, and high-

level features.

3.4 Are high-level features exclusively visual?
However, we do not yet know whether these high-level features are exclu-

sively visual. Do we need human annotation for these features because

human observers bring in additional non-visual knowledge, or that we simply

Fig. 7 t-SNE visualization of scene affordance space. Affordances can distinguish
among superordinate-level scene categories (left), open versus enclosed categories
(center), and public versus private spaces (right).
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do not yet have a grasp on the nonlinear transformations that would be nec-

essary for computer-based analysis? Recent advances in computer vision,

namely, the deep convolutional neural networks (dCNNs) have made tre-

mendous progress in object detection and classification (Russakovsky et al.,

2015). It appears that the depth of these networks allows for very sophisticated,

nonlinear transformations of image content (Kriegeskorte, 2015). As the acti-

vation patterns for upper layers in these networks have been shown to accu-

rately classify images in a number of different ways (Razavian, Azizpour,

Sullivan, & Carlsson, 2014), I am currently exploring the extent to which

affordances can be predicted by dCNN features. The extent of successful

affordance classification with dCNN features shows the extent to which this

knowledge arises visually, rather than through non-visual cognitive means.

3.5 Connections between image features
In this section, I have detailed that a range of low-, medium-, and high-level

features can be used to classify scenes. In this section, as with the literature

more broadly, they have been treated as largely independent entities. Is this a

reasonable assumption? In Fig. 8, I plot the distance between scene category

pairs in features at each of three levels: low (line histograms and color histo-

grams), mid (textons and gist), and high (objects and affordances). All

features were extracted from the SUN-397 database (Xiao et al., 2016).

The low- and mid-level features were released along with this paper, and

the high-level features were obtained by Patterson et al. (2014). This figure

shows that two scene categories that are have high similarity according to gist

features, for example, also tend to have high similarity according to textures

(r¼0.58), and line histograms (r¼0.32), and scenes that share the same objects

also tend to share the same affordances (r¼0.25). Therefore, if an observer has

processed a particular feature in a scene, they will have non-zero information

about other features as well. From the point of view of the visual system, these

correlations are very adaptive because they point to statistical redundancies

that can be exploited to create more efficient representational schemes. How-

ever, these create difficulties for the scientist trying to ascertain which features

are processed to which degrees and at what point in time.

3.6 Section summary
In this chapter, I first established a set of scene environments that have basic

level structure at scale, allowing us to establish the comparative richness of

the semantics of scene environments. The next section detailed the myriad

visual and conceptual features that can be used to categorize these scenes at a
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computational level, as well as the extent to which they are sufficient to

explain scene categorization. However, many correlations exist between

these feature spaces, and scenes that are similar along one type of feature also

tend to be similar along a different feature as well (Fig. 8). These correlations

can create difficulties for the interpretation of studies in scene categorization,

because despite being able to assess independent contributions from these

correlated features (Greene et al., 2016; Groen et al., 2018; Lescroart,

Stansbury, & Gallant, 2015), assessing their causal role in category represen-

tations is not possible. However, each of these correlations represents a

source of possible top-down information that can aid scene categorization.

If two features are highly correlated, then the bottom-up analysis that yields

the presence of one can provide the other “for free” from the top-down.

4. Do observers use category labels in visual
processing?

So far, we have examined the nature and number of environmental

categories, as well as the types of features that can inform the boundaries

Fig. 8 Correlations between feature types. Each point represents the distance between
pair of scene categories in the SUN database. This figure has been subsampled randomly
to only include 1000 pairs. Correlation coefficients (Pearson) are for all 78,606 pairs.
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between categories. What do these category labels do for us? Are they

explicitly used during the perceptual process? The power of a category label

for aiding visual categorization was first observed by Potter in 1975. In her

study, observers were shown a series of photographs at a rate of up to eight

per second. One of the photographs was a target that was queried in a later

memory task. Observers were either pre-cued to the target’s identity, or

were cued after the stream of images had been presented. Some of the

pre-cue trials consisted of a visual preview of the target photograph, while

other pre-cues consisted of a brief category label or description of the pho-

tograph. Potter found that observers weremuchmore accurate at identifying

pre-cued photographs, and remarkably, that the format of the pre-cue

mattered very little (Potter, 1975). In other words, the category label by itself

provided about as much information to observers as viewing the photograph

in advance. Extending this paradigm, Intraub assessed whether observers

could also pick out information from a “negative category”—for example,

to pick out an image from the stream that was not from a category shared by

other photographs in the stream. She found that although performance on

this task was lower than that of a positive category cue, observers could

perform the task reliably above chance even at a presentation rate of nine

images per second (Intraub, 1981). These results suggest that despite being

presented for only 113ms each, every photograph in the stream was tagged

for at least some semantic analysis.

Is it the case that observers extract visual categories automatically? In

Intraub’s task, semantic analysis was task relevant because the observer

needed to know whether there was a negative-category image present in

the stream. By contrast, an automatic process will take place even if it

conflicts with the observer’s task. To answer this question, Fei-Fei and

I used a modified Stroop paradigm in which observers were presented with

a scene or object category label that was superimposed over visual content.

The observers were asked to classify the label as being a word that describes

an object or a scene while ignoring the visual content (itself either a scene or

object). In half of the trials, the label description matched the visual content,

while in the other half of trials, the label was incongruent with the content.

Despite the irrelevance of the image to the task at hand, we found that

observers were faster and more accurate at categorizing words on a congru-

ent visual background compared to an incongruent background, suggesting

that object and scene category information is extracted automatically,

even when doing so hurt performance on the task at hand (Greene &

Fei-Fei, 2014).
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When a category label is invoked, is it the case that the label activates

likely visual features associated with the scene category? Caddigan and col-

leagues tested this idea using two sets of scene images from six different cat-

egories. One set had been rated by observers as being very typical (or

“good”) members of their category, while the other set had been rated as

being atypical (or “bad”). The goal of the experiment was to establish

whether the “goodness” of the exemplar influenced observers’ abilities to

detect a scene as a well-formed coherent scene (as opposed to a phase-

randomized, “scrambled” version of a scene) when the images were rapidly

presented and backward masked. The research team first established the

amount of time necessary to perform this task at 70% accuracy on mid-

typicality images (about 45ms on average). Using this presentation duration,

Caddigan and colleagues presented this scene-or-scramble detection task to

observers. Half of the scenes were good exemplars, and half of the scenes

were bad exemplars. They found that observers’ sensitivity to the good

exemplars was significantly higher than their sensitivity to the bad exemplars

(Caddigan, Choo, Fei-Fei, & Beck, 2017). While it had been long-

established that typicality influenced categorization, this result shows that

typicality influences even the detection of an image as a well-formed scene,

which further highlights the automatic nature of scene categorization.

Moreover, this result suggests that when current visual input contains visual

features that conform to our inner representation (or “template”) of a cat-

egory member, that this automatic category extraction is facilitated,

suggesting that even the earliest visual stages are influenced by top-down

expectations of category appearance.

What might these top-down perceptual templates look like? Together

with my colleagues, I have been working toward developing a system

whereby this private mental knowledge can be visualized externally. We call

this systemREVEAL (Representations Envisioned Via Evolutionary ALgo-

rithm, Greene, Botros, Beck, & Fei-Fei, 2014). In a REVEAL experiment,

the participant is presented with two images in each trial and asked to select

which of the two is closer to their mental representation of a scene category,

say a street scene. At the beginning of the experiment, the two images consist

of entirely random visual noise, but we employ a genetic algorithm to learn

what visual features of each noise example are associated with being chosen,

and which image features decrease the likelihood of being chosen. Based on

what it has learned, this algorithm can then create new image examples with

more of the frequently chosen features. In this way, the images that are

shown to the participant get closer and closer to their mental representation
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as the experiment progresses. The participant is allowed to terminate the

experiment when they are satisfied with the result. In Fig. 9A, the top

row shows this end point for each of five participants who completed this

task. Although the results are far from photorealistic, we improved the visu-

alization in the bottom row by averaging together the 20 images from the

SUN database that were most similar to each result. To verify that what we

have visualized is an integral part of each participant’s street scene represen-

tation, we also employed a scene-or-scramble task similar to that employed

by Caddigan et al. (2017). In this experiment, half of the street images were

the streets that were most similar to the individual participant’s visualized

representation, and the other half were street scenes that were the least sim-

ilar. As shown in Fig. 9B, participants were significantly more sensitive to

detecting images that were more similar to their scene representation than

ones that were dissimilar, suggesting that we are able to visualize the
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Fig. 9 (A) Top row shows raw reconstructed street scene images for each of five
observers. Bottom row shows the average of the 20 most similar images to each recon-
struction from the SUN database. (B) Street scenes that are more similar to each
observer’s reconstructed street scene were detected with higher sensitivity than images
that are the most dissimilar.
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necessary features of an individual’s street scene category representation.

One possible objection to this result is that the participant may have primed

themselves to the type of image they recreated by doing the reconstruction

phase of the experiment immediately before the detection task. To test that

possibility, we had one participant re-do the detection task 14 months after

the initial reconstruction, and obtained virtually identical results. Therefore,

images with visual features that are shared by typical category members not

only aid categorization and detection, but we are able to find out what these

features are for an individual participant.

5. What work is being done by the category label?

Category labels are also known to do a good amount of cognitive

work. Specifically, they seem uniquely suited to helping perceptual pro-

cesses: observers are faster and more accurate in identifying an object after

a congruent verbal cue compared to equally diagnostic non-verbal informa-

tion (Lupyan & Thompson-Schill, 2012). For example, the word “dog” is

more helpful in identifying a picture of a dog than is the sound of a dog bar-

king.Moreover, this effect seems to be perceptual in nature as the word label

was found to modulate the P1, one of the earliest event-related potentials

(ERPs, Boutonnet & Lupyan, 2015). Category labels may also play a role

in pure detection tasks, as they lower the threshold at which observers

can report objects that have been obfuscated in a continuous flash suppres-

sion paradigm (Lupyan & Ward, 2013).

A somewhat different account emerges whenwe consider the role of cat-

egory labels on memory. Overtly naming an object at its basic level category

can reduce observers’ subsequent memories of it (Lupyan, 2008; Richler,

Gauthier, & Palmeri, 2011). This makes sense from the point of view of

information compression: extracting out a category label allows one to dis-

count the numerous idiosyncratic features of the exemplar. Indeed, although

visual memory is generally outstanding, it is challenged when there are mul-

tiple exemplars of the same object category to be memorized (Konkle,

Brady, Alvarez, & Oliva, 2010b), suggesting that visual memory may out-

source some of its demands to language. However, it is not yet clear why

category labeling might lead to worse memory. The act of labeling itself

might shift the object representation (Lupyan, 2008), or tasks that require

exemplar-level processing may require more depth than those requiring

category-level processing, leading to better memory (Richler et al., 2011).
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In addition to boosting detection, perception, and memory, category

labels also provide a rich set of knowledge for visual search. When observers

are given a scene category label, they generate a consistent and correct set of

expectations about the objects that are found in that category (Greene,

2016). These expectations are so strong that they can sometimes lead to false

reports in observers (Brewer & Treyans, 1981; Castelhano & Henderson,

2008). Given a target object to find in a scene, observers generate eye move-

ments that cluster around where that object can be found contextually: a

search for pedestrians will be constrained to horizontal sidewalk and street

surfaces, while a search for paintings will be constrained to walls

(Torralba, Oliva, Castelhano, & Henderson, 2006). How exactly category

labels influence visual search in scenes is less clear. Although searching for

an object in a scene is more efficient than a random object array (Wolfe,

Alvarez, Rosenholtz, Kuzmova, & Sherman, 2011), and previewing a scene

before search leads to more efficient search (Castelhano & Henderson,

2007), simply previewing the category name before commencing search

does provide much of a performance boost (Castelhano & Heaven,

2010). This could be because the “grammar” of the scene that is relevant

to search is in a format that transcends category. For example, if we are

looking for a coffee mug, we know that it is likely to be found on horizontal

surfaces such as tables as desks. However, knowing that we are looking for a

coffee mug in a kitchen tells us very little about where these horizontal sur-

faces are until we preview the specific spatial layout of a specific kitchen. As

we previously saw, the “anchor objects” that help guide visual search are not

themselves especially diagnostic, and instead serve as landmarks that define

space within an environment.

Taken together, we can see that the act of labeling a scene as a member of

a particular category seems to aid very early processing, including detection

and recognition. However, this labeling does not by itself come with infor-

mation that aids in visual search, and it may be detrimental to memory by

allowing observers to abstract over visual features that differentiate among

different scene exemplars.

6. Conclusions

In this chapter, I have examined the notion of the information con-

tained in a visual scene, and howmuch of this information is contained in the

scene’s category or label. Given a scene label, observers are able to generate

consistent expectations of the objects they will find in the scene, and given a
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label that is congruent with a picture, are able to use the category-based

expectations to more easily categorize the scene. Images that share the same

category label also tend to share a number of low-, mid-, and high-level fea-

tures that could be employed to aid the categorization process. However, the

correlations that exist between these features require that we work to assess

the independent contributions of each. Altogether, these results illustrate

that visual cognition and semantic knowledge are intimately connected,

and that shared information between the two help disambiguate the com-

plexities of the visual world.
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